Definition 71.4.2. Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces over $S$. Let $y \in |Y|$. We say the fibre of $f$ over $y$ is locally Noetherian if the equivalent conditions (1), (2), and (3) of Lemma 71.4.1 are satisfied. We say the fibres of $f$ are locally Noetherian if this holds for every $y \in |Y|$.
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)