Lemma 76.5.2. Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces over $S$. Let $\mathcal{F}$ be a quasi-coherent sheaf on $X$. Let $y \in |Y|$. Set $F = f^{-1}(\{ y\} ) \subset |X|$. Assume that

1. $f$ is of finite presentation,

2. $\mathcal{F}$ is of finite presentation, and

3. $\mathcal{F}$ is flat over $Y$ at all $x \in F$.

Then there exists a commutative diagram of algebraic spaces

$\xymatrix{ X \ar[d] & X' \ar[l]^ g \ar[d] \\ Y & Y' \ar[l]_ h }$

such that $h$ and $g$ are étale, there is a point $y' \in |Y'|$ mapping to $y$, we have $F \subset g(|X'|)$, the algebraic spaces $X'$, $Y'$ are affine, and $\Gamma (X', g^*\mathcal{F})$ is a projective $\Gamma (Y', \mathcal{O}_{Y'})$-module.

Proof. As formulated this lemma immmediately reduces to the case of schemes, which is More on Flatness, Lemma 38.12.5. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).