Lemma 77.6.2. Let Y be an algebraic space over a scheme S. Let g : X' \to X be a morphism of algebraic spaces over Y with X locally of finite type over Y. Let \mathcal{F} be a quasi-coherent \mathcal{O}_ X-module. If \text{Ass}_{X/Y}(\mathcal{F}) \subset g(|X'|), then for any morphism Z \to Y we have \text{Ass}_{X_ Z/Z}(\mathcal{F}_ Z) \subset g_ Z(|X'_ Z|).
Proof. By Properties of Spaces, Lemma 66.4.3 the map |X'_ Z| \to |X_ Z| \times _{|X|} |X'| is surjective as X'_ Z is equal to X_ Z \times _ X X'. By Divisors on Spaces, Lemma 71.4.7 the map |X_ Z| \to |X| sends \text{Ass}_{X_ Z/Z}(\mathcal{F}_ Z) into \text{Ass}_{X/Y}(\mathcal{F}). The lemma follows. \square
Comments (0)