Lemma 77.8.4. In Situation 77.8.1. Let $T \subset S$ be a subset. Let $s \in S$ be in the closure of $T$. For $t \in T$, let $u_ t$ be the pullback of $u$ to $X_ t$ and let $u_ s$ be the pullback of $u$ to $X_ s$. If $X$ is locally of finite presentation over $S$, $\mathcal{G}$ is of finite presentation1, and $u_ t = 0$ for all $t \in T$, then $u_ s = 0$.
Proof. To check whether $u_ s$ is zero, is étale local on the fibre $X_ s$. Hence we may pick a point $x \in |X_ s| \subset |X|$ and check in an étale neighbourhood. Choose
as in Proposition 77.5.1. Let $T' \subset S'$ be the inverse image of $T$. Observe that $s'$ is in the closure of $T'$ because $S' \to S$ is open. Hence we reduce to the algebra problem described in the next paragraph.
We have an $R$-module map $u : M \to N$ such that $N$ is projective as an $R$-module and such that $u_ t : M \otimes _ R \kappa (t) \to N \otimes _ R \kappa (t)$ is zero for each $t \in T$. Problem: show that $u_ s = 0$. Let $I \subset R$ be the ideal defined in Lemma 77.8.3. Then $I$ maps to zero in $\kappa (t)$ for all $t \in T$. Hence $T \subset V(I)$. Since $s$ is in the closure of $T$ we see that $s \in V(I)$. Hence $u_ s = 0$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)