Lemma 71.5.5. Let S be a scheme. Let X be an algebraic space over S. Let \mathcal{F} be a finite type, quasi-coherent \mathcal{O}_ X-module. Let r \geq 0. The following are equivalent
\mathcal{F} is finite locally free of rank r
\text{Fit}_{r - 1}(\mathcal{F}) = 0 and \text{Fit}_ r(\mathcal{F}) = \mathcal{O}_ X, and
\text{Fit}_ k(\mathcal{F}) = 0 for k < r and \text{Fit}_ k(\mathcal{F}) = \mathcal{O}_ X for k \geq r.
Comments (0)