Lemma 70.5.5. Let $S$ be a scheme. Let $X$ be an algebraic space over $S$. Let $\mathcal{F}$ be a finite type, quasi-coherent $\mathcal{O}_ X$-module. Let $r \geq 0$. The following are equivalent

$\mathcal{F}$ is finite locally free of rank $r$

$\text{Fit}_{r - 1}(\mathcal{F}) = 0$ and $\text{Fit}_ r(\mathcal{F}) = \mathcal{O}_ X$, and

$\text{Fit}_ k(\mathcal{F}) = 0$ for $k < r$ and $\text{Fit}_ k(\mathcal{F}) = \mathcal{O}_ X$ for $k \geq r$.

## Comments (0)