The Stacks project

Lemma 15.26.4. Let $R$ be a ring. Let $M$ be a finite $R$-module. Let $k \geq 0$ and $I = \text{Fit}_ k(M)$. Asssume that $M_\mathfrak p$ is free of rank $k$ for every $\mathfrak p \not\in V(I)$. Then for every $a \in I$ with $R' = R[\frac{I}{a}]$ the strict transform

\[ M' = (M \otimes _ R R')/a\text{-power torsion} \]

is locally free of rank $k$.

Proof. By Lemma 15.26.3 we have $\text{Fit}_ k(M') = R'$. By Lemma 15.8.7 it suffices to show that $\text{Fit}_{k - 1}(M') = 0$. Recall that $R' \subset R'_ a = R_ a$, see Algebra, Lemma 10.70.2. Hence it suffices to prove that $\text{Fit}_{k - 1}(M')$ maps to zero in $R'_ a = R_ a$. Since clearly $(M')_ a = M_ a$ this reduces us to showing that $\text{Fit}_{k - 1}(M_ a) = 0$ because formation of Fitting ideals commutes with base change according to Lemma 15.8.4 part (3). This is true by our assumption that $M_ a$ is finite locally free of rank $k$ (see Algebra, Lemma 10.78.2) and the already cited Lemma 15.8.7. $\square$


Comments (0)

There are also:

  • 4 comment(s) on Section 15.26: Blowing up and flatness

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0CZN. Beware of the difference between the letter 'O' and the digit '0'.