Lemma 31.35.2. Let $S$ be a scheme. Let $\mathcal{F}$ be a finite type quasi-coherent $\mathcal{O}_ S$-module. Let $Z_ k \subset S$ be the closed subscheme cut out by $\text{Fit}_ k(\mathcal{F})$, see Section 31.9. Assume that $\mathcal{F}$ is locally free of rank $k$ on $S \setminus Z_ k$. Let $S' \to S$ be the blowup of $S$ in $Z_ k$ and let $\mathcal{F}'$ be the strict transform of $\mathcal{F}$. Then $\mathcal{F}'$ is locally free of rank $k$.
Proof. Translation of More on Algebra, Lemma 15.26.4. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)