Lemma 76.21.5. Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces over $S$. If $f$ is locally of finite presentation, then $\mathop{N\! L}\nolimits _{X/Y}$ is étale locally on $X$ quasi-isomorphic to a complex

of quasi-coherent $\mathcal{O}_ X$-modules with $\mathcal{F}^0$ of finite presentation and $\mathcal{F}^{-1}$ of finite type.

## Comments (0)