Lemma 75.26.4. Let $S$ be a scheme. Let $X$ be an algebraic space over $S$. Let $E \in D(\mathcal{O}_ X)$ be perfect. Given $i, r \in \mathbf{Z}$, there exists an open subspace $U \subset X$ characterized by the following
$E|_ U \cong H^ i(E|_ U)[-i]$ and $H^ i(E|_ U)$ is a locally free $\mathcal{O}_ U$-module of rank $r$,
a morphism $f : Y \to X$ factors through $U$ if and only if $Lf^*E$ is isomorphic to a locally free module of rank $r$ placed in degree $i$.
Comments (0)
There are also: