Lemma 75.26.6. Let $S$ be a scheme. Let $X$ be an algebraic space over $S$. Let $E \in D(\mathcal{O}_ X)$ be perfect of tor-amplitude in $[a, b]$ for some $a, b \in \mathbf{Z}$. Let $r \geq 0$. Then there exists a locally closed subspace $j : Z \to X$ characterized by the following
$H^ a(Lj^*E)$ is a locally free $\mathcal{O}_ Z$-module of rank $r$, and
a morphism $f : Y \to X$ factors through $Z$ if and only if for all morphisms $g : Y' \to Y$ the $\mathcal{O}_{Y'}$-module $H^ a(L(f \circ g)^*E)$ is locally free of rank $r$.
Moreover, $j : Z \to X$ is of finite presentation and we have
if $f : Y \to X$ factors as $Y \xrightarrow {g} Z \to X$, then $H^ a(Lf^*E) = g^*H^ a(Lj^*E)$,
if $\beta _ a(x) \leq r$ for all $x \in |X|$, then $j$ is a closed immersion and given $f : Y \to X$ the following are equivalent
$f : Y \to X$ factors through $Z$,
$H^0(Lf^*E)$ is a locally free $\mathcal{O}_ Y$-module of rank $r$,
and if $r = 1$ these are also equivalent to
$\mathcal{O}_ Y \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ Y}(H^0(Lf^*E), H^0(Lf^*E))$ is injective.
Comments (0)
There are also: