Lemma 36.30.6. Let $R$ be a ring. Let $X$ be a scheme and let $f : X \to \mathop{\mathrm{Spec}}(R)$ be proper, flat, and of finite presentation. Let $(M_ n)$ be an inverse system of $R$-modules with surjective transition maps. Then the canonical map
\[ \mathcal{O}_ X \otimes _ R (\mathop{\mathrm{lim}}\nolimits M_ n) \longrightarrow \mathop{\mathrm{lim}}\nolimits \mathcal{O}_ X \otimes _ R M_ n \]
induces an isomorphism from the source to $DQ_ X$ applied to the target.
Proof.
The statement means that for any object $E$ of $D_\mathit{QCoh}(\mathcal{O}_ X)$ the induced map
\[ \mathop{\mathrm{Hom}}\nolimits (E, \mathcal{O}_ X \otimes _ R (\mathop{\mathrm{lim}}\nolimits M_ n)) \longrightarrow \mathop{\mathrm{Hom}}\nolimits (E, \mathop{\mathrm{lim}}\nolimits \mathcal{O}_ X \otimes _ R M_ n) \]
is an isomorphism. Since $D_\mathit{QCoh}(\mathcal{O}_ X)$ has a perfect generator (Theorem 36.15.3) it suffices to check this for perfect $E$. By Lemma 36.3.2 we have $\mathop{\mathrm{lim}}\nolimits \mathcal{O}_ X \otimes _ R M_ n = R\mathop{\mathrm{lim}}\nolimits \mathcal{O}_ X \otimes _ R M_ n$. The exact functor $R\mathop{\mathrm{Hom}}\nolimits _ X(E, -) : D_\mathit{QCoh}(\mathcal{O}_ X) \to D(R)$ of Cohomology, Section 20.44 commutes with products and hence with derived limits, whence
\[ R\mathop{\mathrm{Hom}}\nolimits _ X(E, \mathop{\mathrm{lim}}\nolimits \mathcal{O}_ X \otimes _ R M_ n) = R\mathop{\mathrm{lim}}\nolimits R\mathop{\mathrm{Hom}}\nolimits _ X(E, \mathcal{O}_ X \otimes _ R M_ n) \]
Let $E^\vee $ be the dual perfect complex, see Cohomology, Lemma 20.50.5. We have
\[ R\mathop{\mathrm{Hom}}\nolimits _ X(E, \mathcal{O}_ X \otimes _ R M_ n) = R\Gamma (X, E^\vee \otimes _{\mathcal{O}_ X}^\mathbf {L} Lf^*M_ n) = R\Gamma (X, E^\vee ) \otimes _ R^\mathbf {L} M_ n \]
by Lemma 36.22.1. From Lemma 36.30.4 we see $R\Gamma (X, E^\vee )$ is a perfect complex of $R$-modules. In particular it is a pseudo-coherent complex and by More on Algebra, Lemma 15.102.3 we obtain
\[ R\mathop{\mathrm{lim}}\nolimits R\Gamma (X, E^\vee ) \otimes _ R^\mathbf {L} M_ n = R\Gamma (X, E^\vee ) \otimes _ R^\mathbf {L} \mathop{\mathrm{lim}}\nolimits M_ n \]
as desired.
$\square$
Comments (0)