Lemma 114.25.13. We have the following canonical $k$-vector space identifications:

1. In Deformation Problems, Example 92.4.1 if $x_0 = (k, V)$, then $T_{x_0}\mathcal{F} = (0)$ and $\text{Inf}_{x_0}(\mathcal{F}) = \text{End}_ k(V)$ are finite dimensional.

2. In Deformation Problems, Example 92.5.1 if $x_0 = (k, V, \rho _0)$, then $T_{x_0}\mathcal{F} = \mathop{\mathrm{Ext}}\nolimits ^1_{k[\Gamma ]}(V, V) = H^1(\Gamma , \text{End}_ k(V))$ and $\text{Inf}_{x_0}(\mathcal{F}) = H^0(\Gamma , \text{End}_ k(V))$ are finite dimensional if $\Gamma$ is finitely generated.

3. In Deformation Problems, Example 92.6.1 if $x_0 = (k, V, \rho _0)$, then $T_{x_0}\mathcal{F} = H^1_{cont}(\Gamma , \text{End}_ k(V))$ and $\text{Inf}_{x_0}(\mathcal{F}) = H^0_{cont}(\Gamma , \text{End}_ k(V))$ are finite dimensional if $\Gamma$ is topologically finitely generated.

4. In Deformation Problems, Example 92.7.1 if $x_0 = (k, P)$, then $T_{x_0}\mathcal{F}$ and $\text{Inf}_{x_0}(\mathcal{F}) = \text{Der}_ k(P, P)$ are finite dimensional if $P$ is finitely generated over $k$.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).