Lemma 115.26.1. Let X be a scheme. Assume X is quasi-compact and quasi-separated. Let \mathcal{F} be a quasi-coherent \mathcal{O}_ X-module. Then \mathcal{F} is the directed colimit of its finite type quasi-coherent submodules.
115.26 Duplicate and split out references
This section is a place where we collect duplicates and references which used to say several things at the same time but are now split into their constituent parts.
Proof. This is a duplicate of Properties, Lemma 28.22.3. \square
Lemma 115.26.2. Let S be a scheme. Let X be an algebraic space over S. The map \{ \mathop{\mathrm{Spec}}(k) \to X \text{ monomorphism}\} \to |X| is injective.
Proof. This is a duplicate of Properties of Spaces, Lemma 66.4.12. \square
Theorem 115.26.3. Let S = \mathop{\mathrm{Spec}}(K) with K a field. Let \overline{s} be a geometric point of S. Let G = \text{Gal}_{\kappa (s)} denote the absolute Galois group. Then there is an equivalence of categories \mathop{\mathit{Sh}}\nolimits (S_{\acute{e}tale}) \to G\textit{-Sets}, \mathcal{F} \mapsto \mathcal{F}_{\overline{s}}.
Proof. This is a duplicate of Étale Cohomology, Theorem 59.56.3. \square
Remark 115.26.4. You got here because of a duplicate tag. Please see Formal Deformation Theory, Section 90.12 for the actual content.
Lemma 115.26.5. Let X be a locally ringed space. A direct summand of a finite free \mathcal{O}_ X-module is finite locally free.
Proof. This is a duplicate of Modules, Lemma 17.14.6. \square
Lemma 115.26.6. Let R be a ring. Let E be an R-module. The following are equivalent
E is an injective R-module, and
given an ideal I \subset R and a module map \varphi : I \to E there exists an extension of \varphi to an R-module map R \to E.
Proof. This is Baer's criterion, see Injectives, Lemma 19.2.6. \square
Lemma 115.26.7. Let R be a local ring.
If (M, N, \varphi , \psi ) is a 2-periodic complex such that M, N have finite length. Then e_ R(M, N, \varphi , \psi ) = \text{length}_ R(M) - \text{length}_ R(N).
If (M, \varphi , \psi ) is a (2, 1)-periodic complex such that M has finite length. Then e_ R(M, \varphi , \psi ) = 0.
Suppose that we have a short exact sequence of 2-periodic complexes
0 \to (M_1, N_1, \varphi _1, \psi _1) \to (M_2, N_2, \varphi _2, \psi _2) \to (M_3, N_3, \varphi _3, \psi _3) \to 0If two out of three have cohomology modules of finite length so does the third and we have
e_ R(M_2, N_2, \varphi _2, \psi _2) = e_ R(M_1, N_1, \varphi _1, \psi _1) + e_ R(M_3, N_3, \varphi _3, \psi _3).
Proof. This follows from Chow Homology, Lemmas 42.2.3 and 42.2.4. \square
Lemma 115.26.8. Let A be a ring and let I be an A-module.
The set of extensions of rings 0 \to I \to A' \to A \to 0 where I is an ideal of square zero is canonically bijective to \mathop{\mathrm{Ext}}\nolimits ^1_ A(\mathop{N\! L}\nolimits _{A/\mathbf{Z}}, I).
Given a ring map A \to B, a B-module N, an A-module map c : I \to N, and given extensions of rings with square zero kernels:
0 \to I \to A' \to A \to 0 corresponding to \alpha \in \mathop{\mathrm{Ext}}\nolimits ^1_ A(\mathop{N\! L}\nolimits _{A/\mathbf{Z}}, I), and
0 \to N \to B' \to B \to 0 corresponding to \beta \in \mathop{\mathrm{Ext}}\nolimits ^1_ B(\mathop{N\! L}\nolimits _{B/\mathbf{Z}}, N)
then there is a map A' \to B' fitting into Deformation Theory, Equation (91.2.0.1) if and only if \beta and \alpha map to the same element of \mathop{\mathrm{Ext}}\nolimits ^1_ A(\mathop{N\! L}\nolimits _{A/\mathbf{Z}}, N).
Proof. This follows from Deformation Theory, Lemmas 91.2.3 and 91.2.5. \square
Lemma 115.26.9. Let (S, \mathcal{O}_ S) be a ringed space and let \mathcal{J} be an \mathcal{O}_ S-module.
The set of extensions of sheaves of rings 0 \to \mathcal{J} \to \mathcal{O}_{S'} \to \mathcal{O}_ S \to 0 where \mathcal{J} is an ideal of square zero is canonically bijective to \mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_ S}(\mathop{N\! L}\nolimits _{S/\mathbf{Z}}, \mathcal{J}).
Given a morphism of ringed spaces f : (X, \mathcal{O}_ X) \to (S, \mathcal{O}_ S), an \mathcal{O}_ X-module \mathcal{G}, an f-map c : \mathcal{J} \to \mathcal{G}, and given extensions of sheaves of rings with square zero kernels:
0 \to \mathcal{J} \to \mathcal{O}_{S'} \to \mathcal{O}_ S \to 0 corresponding to \alpha \in \mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_ S}(\mathop{N\! L}\nolimits _{S/\mathbf{Z}}, \mathcal{J}),
0 \to \mathcal{G} \to \mathcal{O}_{X'} \to \mathcal{O}_ X \to 0 corresponding to \beta \in \mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_ X}(\mathop{N\! L}\nolimits _{X/\mathbf{Z}}, \mathcal{G})
then there is a morphism X' \to S' fitting into Deformation Theory, Equation (91.7.0.1) if and only if \beta and \alpha map to the same element of \mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_ X}(Lf^*\mathop{N\! L}\nolimits _{S/\mathbf{Z}}, \mathcal{G}).
Proof. This follows from Deformation Theory, Lemmas 91.7.4 and 91.7.6. \square
Lemma 115.26.10. Let (\mathop{\mathit{Sh}}\nolimits (\mathcal{B}), \mathcal{O}_\mathcal {B}) be a ringed topos and let \mathcal{J} be an \mathcal{O}_\mathcal {B}-module.
The set of extensions of sheaves of rings 0 \to \mathcal{J} \to \mathcal{O}_{\mathcal{B}'} \to \mathcal{O}_\mathcal {B} \to 0 where \mathcal{J} is an ideal of square zero is canonically bijective to \mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_\mathcal {B}}( \mathop{N\! L}\nolimits _{\mathcal{O}_\mathcal {B}/\mathbf{Z}}, \mathcal{J}).
Given a morphism of ringed topoi f : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{B}), \mathcal{O}_\mathcal {B}), an \mathcal{O}-module \mathcal{G}, an f^{-1}\mathcal{O}_\mathcal {B}-module map c : f^{-1}\mathcal{J} \to \mathcal{G}, and given extensions of sheaves of rings with square zero kernels:
0 \to \mathcal{J} \to \mathcal{O}_{\mathcal{B}'} \to \mathcal{O}_\mathcal {B} \to 0 corresponding to \alpha \in \mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_\mathcal {B}}( \mathop{N\! L}\nolimits _{\mathcal{O}_\mathcal {B}/\mathbf{Z}}, \mathcal{J}),
0 \to \mathcal{G} \to \mathcal{O}' \to \mathcal{O} \to 0 corresponding to \beta \in \mathop{\mathrm{Ext}}\nolimits ^1_\mathcal {O}(\mathop{N\! L}\nolimits _{\mathcal{O}/\mathbf{Z}}, \mathcal{G})
then there is a morphism (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}') \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{B}, \mathcal{O}_{\mathcal{B}'}) fitting into Deformation Theory, Equation (91.13.0.1) if and only if \beta and \alpha map to the same element of \mathop{\mathrm{Ext}}\nolimits ^1_\mathcal {O}( Lf^*\mathop{N\! L}\nolimits _{\mathcal{O}_\mathcal {B}/\mathbf{Z}}, \mathcal{G}).
Proof. This follows from Deformation Theory, Lemmas 91.13.4 and 91.13.6. \square
Remark 115.26.11. This tag used to point to a section describing several examples of deformation problems. These now each have their own section. See Deformation Problems, Sections 93.4, 93.5, 93.6, and 93.7.
Lemma 115.26.12. Deformation Problems, Examples 93.4.1, 93.5.1, 93.6.1, and 93.7.1 satisfy the Rim-Schlessinger condition (RS).
Proof. This follows from Deformation Problems, Lemmas 93.4.2, 93.5.2, 93.6.2, and 93.7.2. \square
Lemma 115.26.13. We have the following canonical k-vector space identifications:
In Deformation Problems, Example 93.4.1 if x_0 = (k, V), then T_{x_0}\mathcal{F} = (0) and \text{Inf}_{x_0}(\mathcal{F}) = \text{End}_ k(V) are finite dimensional.
In Deformation Problems, Example 93.5.1 if x_0 = (k, V, \rho _0), then T_{x_0}\mathcal{F} = \mathop{\mathrm{Ext}}\nolimits ^1_{k[\Gamma ]}(V, V) = H^1(\Gamma , \text{End}_ k(V)) and \text{Inf}_{x_0}(\mathcal{F}) = H^0(\Gamma , \text{End}_ k(V)) are finite dimensional if \Gamma is finitely generated.
In Deformation Problems, Example 93.6.1 if x_0 = (k, V, \rho _0), then T_{x_0}\mathcal{F} = H^1_{cont}(\Gamma , \text{End}_ k(V)) and \text{Inf}_{x_0}(\mathcal{F}) = H^0_{cont}(\Gamma , \text{End}_ k(V)) are finite dimensional if \Gamma is topologically finitely generated.
In Deformation Problems, Example 93.7.1 if x_0 = (k, P), then T_{x_0}\mathcal{F} and \text{Inf}_{x_0}(\mathcal{F}) = \text{Der}_ k(P, P) are finite dimensional if P is finitely generated over k.
Proof. This follows from Deformation Problems, Lemmas 93.4.3, 93.5.3, 93.6.3, and 93.7.3. \square
Comments (0)