The Stacks project

Lemma 115.26.7. Let $R$ be a local ring.

  1. If $(M, N, \varphi , \psi )$ is a $2$-periodic complex such that $M$, $N$ have finite length. Then $e_ R(M, N, \varphi , \psi ) = \text{length}_ R(M) - \text{length}_ R(N)$.

  2. If $(M, \varphi , \psi )$ is a $(2, 1)$-periodic complex such that $M$ has finite length. Then $e_ R(M, \varphi , \psi ) = 0$.

  3. Suppose that we have a short exact sequence of $2$-periodic complexes

    \[ 0 \to (M_1, N_1, \varphi _1, \psi _1) \to (M_2, N_2, \varphi _2, \psi _2) \to (M_3, N_3, \varphi _3, \psi _3) \to 0 \]

    If two out of three have cohomology modules of finite length so does the third and we have

    \[ e_ R(M_2, N_2, \varphi _2, \psi _2) = e_ R(M_1, N_1, \varphi _1, \psi _1) + e_ R(M_3, N_3, \varphi _3, \psi _3). \]

Proof. This follows from Chow Homology, Lemmas 42.2.3 and 42.2.4. $\square$

Comments (2)

Comment #2608 by Ko Aoki on

Typo in the statement of (3): "-periodic complexes" should be replaced by "-periodic complexes."

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 02PI. Beware of the difference between the letter 'O' and the digit '0'.