The Stacks project

Lemma 99.14.2. The category $\mathcal{P}\! \mathit{olarized}$ is fibred in groupoids over $\mathcal{S}\! \mathit{paces}'_{fp, flat, proper}$. The category $\mathcal{P}\! \mathit{olarized}$ is fibred in groupoids over $\mathit{Sch}_{fppf}$.

Proof. We check conditions (1) and (2) of Categories, Definition 4.35.1.

Condition (1). Let $(X \to S, \mathcal{L})$ be an object of $\mathcal{P}\! \mathit{olarized}$ and let $(X' \to S') \to (X \to S)$ be a morphism of $\mathcal{S}\! \mathit{paces}'_{fp, flat, proper}$. Then we let $\mathcal{L}'$ be the pullback of $\mathcal{L}$ to $X'$. Observe that $X, S, S'$ are schemes, hence $X'$ is a scheme as well (as the fibre product of schemes). Then $\mathcal{L}'$ is ample on $X'/S'$ by Morphisms, Lemma 29.37.9. In this way we obtain a morphism $(X' \to S', \mathcal{L}') \to (X \to S, \mathcal{L})$ lying over $(X' \to S') \to (X \to S)$.

Condition (2). Consider morphisms $(f, g, \varphi ) : (X' \to S', \mathcal{L}') \to (X \to S, \mathcal{L})$ and $(a, b, \psi ) : (Y \to T, \mathcal{N}) \to (X \to S, \mathcal{L})$ of $\mathcal{P}\! \mathit{olarized}$. Given a morphism $(k, h) : (Y \to T) \to (X' \to S')$ of $\mathcal{S}\! \mathit{paces}'_{fp, flat, proper}$ with $(f, g) \circ (k, h) = (a, b)$ we have to show there is a unique morphism $(k, h, \chi ) : (Y \to T, \mathcal{N}) \to (X' \to S', \mathcal{L}')$ of $\mathcal{P}\! \mathit{olarized}$ such that $(f, g, \varphi ) \circ (k, h, \chi ) = (a, b, \psi )$. We can just take

\[ \chi = \psi \circ (k^*\varphi )^{-1} \]

This proves condition (2). A composition of functors defining fibred categories defines a fibred category, see Categories, Lemma 4.33.12. This we see that $\mathcal{P}\! \mathit{olarized}$ is fibred in groupoids over $\mathit{Sch}_{fppf}$ (strictly speaking we should check the fibre categories are groupoids and apply Categories, Lemma 4.35.2). $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0D3Z. Beware of the difference between the letter 'O' and the digit '0'.