Lemma 99.14.2. The category \mathcal{P}\! \mathit{olarized} is fibred in groupoids over \mathcal{S}\! \mathit{paces}'_{fp, flat, proper}. The category \mathcal{P}\! \mathit{olarized} is fibred in groupoids over \mathit{Sch}_{fppf}.
Proof. We check conditions (1) and (2) of Categories, Definition 4.35.1.
Condition (1). Let (X \to S, \mathcal{L}) be an object of \mathcal{P}\! \mathit{olarized} and let (X' \to S') \to (X \to S) be a morphism of \mathcal{S}\! \mathit{paces}'_{fp, flat, proper}. Then we let \mathcal{L}' be the pullback of \mathcal{L} to X'. Observe that X, S, S' are schemes, hence X' is a scheme as well (as the fibre product of schemes). Then \mathcal{L}' is ample on X'/S' by Morphisms, Lemma 29.37.9. In this way we obtain a morphism (X' \to S', \mathcal{L}') \to (X \to S, \mathcal{L}) lying over (X' \to S') \to (X \to S).
Condition (2). Consider morphisms (f, g, \varphi ) : (X' \to S', \mathcal{L}') \to (X \to S, \mathcal{L}) and (a, b, \psi ) : (Y \to T, \mathcal{N}) \to (X \to S, \mathcal{L}) of \mathcal{P}\! \mathit{olarized}. Given a morphism (k, h) : (Y \to T) \to (X' \to S') of \mathcal{S}\! \mathit{paces}'_{fp, flat, proper} with (f, g) \circ (k, h) = (a, b) we have to show there is a unique morphism (k, h, \chi ) : (Y \to T, \mathcal{N}) \to (X' \to S', \mathcal{L}') of \mathcal{P}\! \mathit{olarized} such that (f, g, \varphi ) \circ (k, h, \chi ) = (a, b, \psi ). We can just take
This proves condition (2). A composition of functors defining fibred categories defines a fibred category, see Categories, Lemma 4.33.12. This we see that \mathcal{P}\! \mathit{olarized} is fibred in groupoids over \mathit{Sch}_{fppf} (strictly speaking we should check the fibre categories are groupoids and apply Categories, Lemma 4.35.2). \square
Comments (0)