Lemma 15.13.1. Let $(R, I)$ be a henselian pair. Let $\overline{P}$ be a finite projective $R/I$-module. Then there exists a finite projective $R$-module $P$ such that $P/IP \cong \overline{P}$.

**Proof.**
This follows from the fact that we can lift the finite projective $R/I$-module $\overline{P}$ to a finite projective module $P'$ over some $R'$ étale over $R$ with $R/I = R'/IR'$, see Lemma 15.9.11. Then, since $(R, I)$ is a henselian pair, the étale ring map $R \to R'$ has a section $\tau : R' \to R$ (Lemma 15.11.6). Setting $P = P' \otimes _{R', \tau } R$ finishes the proof.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)

There are also: