Lemma 76.31.2. Let $S$ be a scheme. Let $f : X \to Y$ be a finite type morphism of algebraic spaces over $S$. Let
\[ n_{X/Y} : |Y| \to \{ -\infty , 0, 1, 2, 3, \ldots \} \]
be the function which associates to $y \in |Y|$ the integer discussed in Lemma 76.31.1. If $g : Y' \to Y$ is a morphism then
\[ n_{X'/Y'} = n_{X/Y} \circ |g| \]
where $X' \to Y'$ is the base change of $f$.
Comments (2)
Comment #8141 by Laurent Moret-Bailly on
Comment #8233 by Stacks Project on