Lemma 84.12.8. In Situation 84.3.3.

An object $K$ of $D(\mathcal{C}_{total})$ is cartesian if and only if $H^ q(K)$ is a cartesian abelian sheaf for all $q$.

Let $\mathcal{O}$ be a sheaf of rings on $\mathcal{C}_{total}$ such that the morphisms $f_{\delta ^ n_ j} : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}_ n), \mathcal{O}_ n) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}_{n - 1}), \mathcal{O}_{n - 1})$ are flat. Then an object $K$ of $D(\mathcal{O})$ is cartesian if and only if $H^ q(K)$ is a cartesian $\mathcal{O}$-module for all $q$.

## Comments (0)