Lemma 21.28.4. Let f : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}_\mathcal {C}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}_\mathcal {D}) be a morphism of ringed topoi. Let K be an object of D(\mathcal{O}_\mathcal {D}). Assume
f is flat,
K is bounded below,
H^ q(K) \to Rf_*f^*H^ q(K) is an isomorphism.
Then K \to Rf_*f^*K is an isomorphism.
Comments (0)