The Stacks project

Lemma 85.15.3. Let $\mathcal{C}$ be a site.

  1. For $K$ in $\text{SR}(\mathcal{C})$ the functor $j_!$ gives an equivalence $\mathop{\mathit{Sh}}\nolimits (\mathcal{C}/K) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C})/F(K)^\# $ where $F$ is as in Hypercoverings, Definition 25.2.2.

  2. The functor $j^{-1} : \mathop{\mathit{Sh}}\nolimits (\mathcal{C}) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C}/K)$ corresponds via the identification of (1) with $\mathcal{F} \mapsto (\mathcal{F} \times F(K)^\# \to F(K)^\# )$.

  3. For $f : K \to L$ in $\text{SR}(\mathcal{C})$ the functor $f^{-1}$ corresponds via the identifications of (1) to the functor $\mathop{\mathit{Sh}}\nolimits (\mathcal{C})/F(L)^\# \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C})/F(K)^\# $, $(\mathcal{G} \to F(L)^\# ) \mapsto (\mathcal{G} \times _{F(L)^\# } F(K)^\# \to F(K)^\# )$.

Proof. Observe that if $K = \{ U_ i\} _{i \in I}$ then the category $\mathop{\mathit{Sh}}\nolimits (\mathcal{C}/K)$ decomposes as the product of the categories $\mathop{\mathit{Sh}}\nolimits (\mathcal{C}/U_ i)$. Observe that $F(K)^\# = \coprod _{i \in I} h_{U_ i}^\# $ (coproduct in sheaves). Hence $\mathop{\mathit{Sh}}\nolimits (\mathcal{C})/F(K)^\# $ is the product of the categories $\mathop{\mathit{Sh}}\nolimits (\mathcal{C})/h_{U_ i}^\# $. Thus (1) and (2) follow from the corresponding statements for each $i$, see Sites, Lemmas 7.25.4 and 7.25.7. Similarly, if $L = \{ V_ j\} _{j \in J}$ and $f$ is given by $\alpha : I \to J$ and $f_ i : U_ i \to V_{\alpha (i)}$, then we can apply Sites, Lemma 7.25.9 to each of the re-localization morphisms $\mathcal{C}/U_ i \to \mathcal{C}/V_{\alpha (i)}$ to get (3). $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0D87. Beware of the difference between the letter 'O' and the digit '0'.