Lemma 85.15.3. Let $\mathcal{C}$ be a site.
For $K$ in $\text{SR}(\mathcal{C})$ the functor $j_!$ gives an equivalence $\mathop{\mathit{Sh}}\nolimits (\mathcal{C}/K) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C})/F(K)^\# $ where $F$ is as in Hypercoverings, Definition 25.2.2.
The functor $j^{-1} : \mathop{\mathit{Sh}}\nolimits (\mathcal{C}) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C}/K)$ corresponds via the identification of (1) with $\mathcal{F} \mapsto (\mathcal{F} \times F(K)^\# \to F(K)^\# )$.
For $f : K \to L$ in $\text{SR}(\mathcal{C})$ the functor $f^{-1}$ corresponds via the identifications of (1) to the functor $\mathop{\mathit{Sh}}\nolimits (\mathcal{C})/F(L)^\# \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C})/F(K)^\# $, $(\mathcal{G} \to F(L)^\# ) \mapsto (\mathcal{G} \times _{F(L)^\# } F(K)^\# \to F(K)^\# )$.
Comments (0)