Lemma 85.25.5. Let U be a simplicial object of \textit{LC} and let a : U \to X be an augmentation. Let \mathcal{A} \subset \textit{Ab}(U_{Zar}) denote the weak Serre subcategory of cartesian abelian sheaves. If U is a proper hypercovering of X, then the functor a^{-1} defines an equivalence
with quasi-inverse Ra_* where a : \mathop{\mathit{Sh}}\nolimits (U_{Zar}) \to \mathop{\mathit{Sh}}\nolimits (X) is as in Lemma 85.2.8.
Comments (0)