Example 84.23.2. Let $S$ be one of the following types of schemes

1. the spectrum of a finite field,

2. the spectrum of a separably closed field,

3. the spectrum of a strictly henselian Noetherian local ring,

4. the spectrum of a henselian Noetherian local ring with finite residue field,

Let $\Lambda$ be a finite ring whose order is invertible on $S$. Let $\mathcal{C} \subset (\mathit{Sch}/S)_{\acute{e}tale}$ be the full subcategory consisting of schemes locally of finite type over $S$ endowed with the étale topology. Let $\mathcal{O}_\mathcal {C} = \underline{\Lambda }$ be the constant sheaf. Set $\mathcal{A}_ U = \textit{Mod}(\mathcal{O}_ U)$, in other words, we consider all étale sheaves of $\Lambda$-modules. Let $\mathcal{B} \subset \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$ be the set of quasi-compact objects. For $V \in \mathcal{B}$ set

$d_ V = 1 + 2\dim (S) + \sup \nolimits _{v \in V}(\text{trdeg}_{\kappa (s)}(\kappa (v)) + 2 \dim \mathcal{O}_{V, v})$

and let $\text{Cov}_ V$ denote the étale coverings $\{ V_ i \to V\}$ with $V_ i$ quasi-compact for all $i$. Our choice of bound $d_ V$ comes from Gabber's theorem on cohomological dimension. To see that condition (3) holds with this choice, use [Exposé VIII-A, Corollary 1.2 and Lemma 2.2, Traveaux] plus elementary arguments on cohomological dimensions of fields. We add $1$ to the formula because our list contains cases where we allow $S$ to have finite residue field. We will come back to this example later (insert future reference).

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).