The Stacks project

Lemma 59.102.5. With notation as above.

  1. For $X \in \mathop{\mathrm{Ob}}\nolimits ((\mathit{Sch}/S)_{ph})$ and an abelian torsion sheaf $\mathcal{F}$ on $X_{\acute{e}tale}$ we have $\epsilon _{X, *}a_ X^{-1}\mathcal{F} = \pi _ X^{-1}\mathcal{F}$ and $R^ i\epsilon _{X, *}(a_ X^{-1}\mathcal{F}) = 0$ for $i > 0$.

  2. For a proper morphism $f : X \to Y$ in $(\mathit{Sch}/S)_{ph}$ and abelian torsion sheaf $\mathcal{F}$ on $X$ we have $a_ Y^{-1}(R^ if_{small, *}\mathcal{F}) = R^ if_{big, ph, *}(a_ X^{-1}\mathcal{F})$ for all $i$.

  3. For a scheme $X$ and $K$ in $D^+(X_{\acute{e}tale})$ with torsion cohomology sheaves the map $\pi _ X^{-1}K \to R\epsilon _{X, *}(a_ X^{-1}K)$ is an isomorphism.

  4. For a proper morphism $f : X \to Y$ of schemes and $K$ in $D^+(X_{\acute{e}tale})$ with torsion cohomology sheaves we have $a_ Y^{-1}(Rf_{small, *}K) = Rf_{big, ph, *}(a_ X^{-1}K)$.

Proof. By Lemma 59.102.4 the lemmas in Cohomology on Sites, Section 21.30 all apply to our current setting. To translate the results observe that the category $\mathcal{A}_ X$ of Cohomology on Sites, Lemma 21.30.2 is the full subcategory of $\textit{Ab}((\mathit{Sch}/X)_{ph})$ consisting of sheaves of the form $a_ X^{-1}\mathcal{F}$ where $\mathcal{F}$ is an abelian torsion sheaf on $X_{\acute{e}tale}$.

Part (1) is equivalent to $(V_ n)$ for all $n$ which holds by Cohomology on Sites, Lemma 21.30.8.

Part (2) follows by applying $\epsilon _ Y^{-1}$ to the conclusion of Cohomology on Sites, Lemma 21.30.3.

Part (3) follows from Cohomology on Sites, Lemma 21.30.8 part (1) because $\pi _ X^{-1}K$ is in $D^+_{\mathcal{A}'_ X}((\mathit{Sch}/X)_{\acute{e}tale})$ and $a_ X^{-1} = \epsilon _ X^{-1} \circ a_ X^{-1}$.

Part (4) follows from Cohomology on Sites, Lemma 21.30.8 part (2) for the same reason. $\square$


Comments (0)

There are also:

  • 3 comment(s) on Section 59.102: Comparing ph and étale topologies

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0DE4. Beware of the difference between the letter 'O' and the digit '0'.