Lemma 59.102.6. Let $X$ be a scheme. For $K \in D^+(X_{\acute{e}tale})$ with torsion cohomology sheaves the map

\[ K \longrightarrow Ra_{X, *}a_ X^{-1}K \]

is an isomorphism with $a_ X : \mathop{\mathit{Sh}}\nolimits ((\mathit{Sch}/X)_{ph}) \to \mathop{\mathit{Sh}}\nolimits (X_{\acute{e}tale})$ as above.

**Proof.**
We first reduce the statement to the case where $K$ is given by a single abelian sheaf. Namely, represent $K$ by a bounded below complex $\mathcal{F}^\bullet $ of torsion abelian sheaves. This is possible by Cohomology on Sites, Lemma 21.19.8. By the case of a sheaf we see that $\mathcal{F}^ n = a_{X, *} a_ X^{-1} \mathcal{F}^ n$ and that the sheaves $R^ qa_{X, *}a_ X^{-1}\mathcal{F}^ n$ are zero for $q > 0$. By Leray's acyclicity lemma (Derived Categories, Lemma 13.16.7) applied to $a_ X^{-1}\mathcal{F}^\bullet $ and the functor $a_{X, *}$ we conclude. From now on assume $K = \mathcal{F}$ where $\mathcal{F}$ is a torsion abelian sheaf.

By Lemma 59.102.1 we have $a_{X, *}a_ X^{-1}\mathcal{F} = \mathcal{F}$. Thus it suffices to show that $R^ qa_{X, *}a_ X^{-1}\mathcal{F} = 0$ for $q > 0$. For this we can use $a_ X = \epsilon _ X \circ \pi _ X$ and the Leray spectral sequence (Cohomology on Sites, Lemma 21.14.7). By Lemma 59.102.5 we have $R^ i\epsilon _{X, *}(a_ X^{-1}\mathcal{F}) = 0$ for $i > 0$ and $\epsilon _{X, *}a_ X^{-1}\mathcal{F} = \pi _ X^{-1}\mathcal{F}$. By Lemma 59.99.4 we have $R^ j\pi _{X, *}(\pi _ X^{-1}\mathcal{F}) = 0$ for $j > 0$. This concludes the proof.
$\square$

## Comments (0)

There are also: