Loading [MathJax]/extensions/tex2jax.js

The Stacks project

Lemma 84.5.4. Let $S$ be a scheme. Let $f : Y \to X$ be a morphism of algebraic spaces over $S$. Then

  1. For $K$ in $D(X_{\acute{e}tale})$ we have $H^ n_{\acute{e}tale}(X, \pi _ X^{-1}K) = H^ n(X_{\acute{e}tale}, K)$.

  2. For $K$ in $D(X_{\acute{e}tale}, \mathcal{O}_ X)$ we have $H^ n_{\acute{e}tale}(X, L\pi _ X^*K) = H^ n(X_{\acute{e}tale}, K)$.

  3. For $K$ in $D(X_{\acute{e}tale})$ we have $H^ n_{\acute{e}tale}(Y, \pi _ X^{-1}K) = H^ n(Y_{\acute{e}tale}, f_{small}^{-1}K)$.

  4. For $K$ in $D(X_{\acute{e}tale}, \mathcal{O}_ X)$ we have $H^ n_{\acute{e}tale}(Y, L\pi _ X^*K) = H^ n(Y_{\acute{e}tale}, Lf_{small}^*K)$.

  5. For $M$ in $D((\textit{Spaces}/X)_{\acute{e}tale})$ we have $H^ n_{\acute{e}tale}(Y, M) = H^ n(Y_{\acute{e}tale}, i_ f^{-1}M)$.

  6. For $M$ in $D((\textit{Spaces}/X)_{\acute{e}tale}, \mathcal{O})$ we have $H^ n_{\acute{e}tale}(Y, M) = H^ n(Y_{\acute{e}tale}, i_ f^*M)$.

Proof. To prove (5) represent $M$ by a K-injective complex of abelian sheaves and apply Lemma 84.5.2 and work out the definitions. Part (3) follows from this as $i_ f^{-1}\pi _ X^{-1} = f_{small}^{-1}$. Part (1) is a special case of (3).

Part (6) follows from the very general Cohomology on Sites, Lemma 21.37.5. Then part (4) follows because $Lf_{small}^* = i_ f^* \circ L\pi _ X^*$. Part (2) is a special case of (4). $\square$


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.