The Stacks project

Lemma 84.5.3. Let $S$ be a scheme. Let $f : Y \to X$ be a morphism of algebraic spaces over $S$.

  1. For $K$ in $D((\textit{Spaces}/Y)_{\acute{e}tale})$ we have $ (Rf_{big, *}K)|_{X_{\acute{e}tale}} = Rf_{small, *}(K|_{Y_{\acute{e}tale}}) $ in $D(X_{\acute{e}tale})$.

  2. For $K$ in $D((\textit{Spaces}/Y)_{\acute{e}tale}, \mathcal{O})$ we have $ (Rf_{big, *}K)|_{X_{\acute{e}tale}} = Rf_{small, *}(K|_{Y_{\acute{e}tale}}) $ in $D(\textit{Mod}(X_{\acute{e}tale}, \mathcal{O}_ X))$.

More generally, let $g : X' \to X$ be an object of $(\textit{Spaces}/X)_{\acute{e}tale}$. Consider the fibre product

\[ \xymatrix{ Y' \ar[r]_{g'} \ar[d]_{f'} & Y \ar[d]^ f \\ X' \ar[r]^ g & X } \]

Then

  1. For $K$ in $D((\textit{Spaces}/Y)_{\acute{e}tale})$ we have $i_ g^{-1}(Rf_{big, *}K) = Rf'_{small, *}(i_{g'}^{-1}K)$ in $D(X'_{\acute{e}tale})$.

  2. For $K$ in $D((\textit{Spaces}/Y)_{\acute{e}tale}, \mathcal{O})$ we have $i_ g^*(Rf_{big, *}K) = Rf'_{small, *}(i_{g'}^*K)$ in $D(\textit{Mod}(X'_{\acute{e}tale}, \mathcal{O}_{X'}))$.

  3. For $K$ in $D((\textit{Spaces}/Y)_{\acute{e}tale})$ we have $g_{big}^{-1}(Rf_{big, *}K) = Rf'_{big, *}((g'_{big})^{-1}K)$ in $D((\textit{Spaces}/X')_{\acute{e}tale})$.

  4. For $K$ in $D((\textit{Spaces}/Y)_{\acute{e}tale}, \mathcal{O})$ we have $g_{big}^*(Rf_{big, *}K) = Rf'_{big, *}((g'_{big})^*K)$ in $D(\textit{Mod}(X'_{\acute{e}tale}, \mathcal{O}_{X'}))$.

Proof. Part (1) follows from Lemma 84.5.2 and (84.5.2.1) on choosing a K-injective complex of abelian sheaves representing $K$.

Part (3) follows from Lemma 84.5.2 and Topologies, Lemma 34.4.19 on choosing a K-injective complex of abelian sheaves representing $K$.

Part (5) is Cohomology on Sites, Lemma 21.21.1.

Part (6) is Cohomology on Sites, Lemma 21.21.2.

Part (2) can be proved as follows. Above we have seen that $\pi _ X \circ f_{big} = f_{small} \circ \pi _ Y$ as morphisms of ringed sites. Hence we obtain $R\pi _{X, *} \circ Rf_{big, *} = Rf_{small, *} \circ R\pi _{Y, *}$ by Cohomology on Sites, Lemma 21.19.2. Since the restriction functors $\pi _{X, *}$ and $\pi _{Y, *}$ are exact, we conclude.

Part (4) follows from part (6) and part (2) applied to $f' : Y' \to X'$. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0DGA. Beware of the difference between the letter 'O' and the digit '0'.