Lemma 38.29.5. In Situation 38.29.1 let $K$ be as in Lemma 38.29.2. For any quasi-compact open $U \subset X$ we have

$R\Gamma (U, K) \otimes _ A^\mathbf {L} A_ n = R\Gamma (U_ n, K_ n)$

in $D(A_ n)$ where $U_ n = U \cap X_ n$.

Proof. Fix $n$. By Derived Categories of Schemes, Lemma 36.33.4 there exists a system of perfect complexes $E_ m$ on $X$ such that $R\Gamma (U, K) = \text{hocolim} R\Gamma (X, K \otimes ^\mathbf {L} E_ m)$. In fact, this formula holds not just for $K$ but for every object of $D_\mathit{QCoh}(\mathcal{O}_ X)$. Applying this to $K_ n$ we obtain

\begin{align*} R\Gamma (U_ n, K_ n) & = R\Gamma (U, K_ n) \\ & = \text{hocolim}_ m R\Gamma (X, K_ n \otimes ^\mathbf {L} E_ m) \\ & = \text{hocolim}_ m R\Gamma (X_ n, K_ n \otimes ^\mathbf {L} E_ m|_{X_ n}) \end{align*}

Using Lemma 38.29.3 and the fact that $- \otimes _ A^\mathbf {L} A_ n$ commutes with homotopy colimits we obtain the result. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).