Lemma 38.29.2. In Situation 38.29.1 consider

Then $K$ is in $D^-_{\mathit{QCoh}}(\mathcal{O}_ X)$.

Lemma 38.29.2. In Situation 38.29.1 consider

\[ K = R\mathop{\mathrm{lim}}\nolimits _{D_\mathit{QCoh}(\mathcal{O}_ X)}(K_ n) = DQ_ X(R\mathop{\mathrm{lim}}\nolimits _{D(\mathcal{O}_ X)} K_ n) \]

Then $K$ is in $D^-_{\mathit{QCoh}}(\mathcal{O}_ X)$.

**Proof.**
The functor $DQ_ X$ exists because $X$ is quasi-compact and quasi-separated, see Derived Categories of Schemes, Lemma 36.21.1. Since $DQ_ X$ is a right adjoint it commutes with products and therefore with derived limits. Hence the equality in the statement of the lemma.

By Derived Categories of Schemes, Lemma 36.21.4 the functor $DQ_ X$ has bounded cohomological dimension. Hence it suffices to show that $R\mathop{\mathrm{lim}}\nolimits K_ n \in D^-(\mathcal{O}_ X)$. To see this, let $U \subset X$ be an affine open. Then there is a canonical exact sequence

\[ 0 \to R^1\mathop{\mathrm{lim}}\nolimits H^{m - 1}(U, K_ n) \to H^ m(U, R\mathop{\mathrm{lim}}\nolimits K_ n) \to \mathop{\mathrm{lim}}\nolimits H^ m(U, K_ n) \to 0 \]

by Cohomology, Lemma 20.35.1. Since $U$ is affine and $K_ n$ is pseudo-coherent (and hence has quasi-coherent cohomology sheaves by Derived Categories of Schemes, Lemma 36.10.1) we see that $H^ m(U, K_ n) = H^ m(K_ n)(U)$ by Derived Categories of Schemes, Lemma 36.3.5. Thus we conclude that it suffices to show that $K_ n$ is bounded above independent of $n$.

Since $K_ n$ is pseudo-coherent we have $K_ n \in D^-(\mathcal{O}_{X_ n})$. Suppose that $a_ n$ is maximal such that $H^{a_ n}(K_ n)$ is nonzero. Of course $a_1 \leq a_2 \leq a_3 \leq \ldots $. Note that $H^{a_ n}(K_ n)$ is an $\mathcal{O}_{X_ n}$-module of finite presentation (Cohomology, Lemma 20.44.9). We have $H^{a_ n}(K_{n - 1}) = H^{a_ n}(K_ n) \otimes _{\mathcal{O}_{X_ n}} \mathcal{O}_{X_{n - 1}}$. Since $X_{n - 1} \to X_ n$ is a thickening, it follows from Nakayama's lemma (Algebra, Lemma 10.20.1) that if $H^{a_ n}(K_ n) \otimes _{\mathcal{O}_{X_ n}} \mathcal{O}_{X_{n - 1}}$ is zero, then $H^{a_ n}(K_ n)$ is zero too. Thus $a_ n = a_{n - 1}$ for all $n$ and we conclude. $\square$

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)