Theorem 76.13.6 (Derived Grothendieck Existence Theorem). In Situation 76.13.1 there exists a pseudo-coherent $K$ in $D(\mathcal{O}_ X)$ such that $K_ n = K \otimes _{\mathcal{O}_ X}^\mathbf {L} \mathcal{O}_{X_ n}$ for all $n$ compatibly with the maps $\varphi _ n$.

**Proof.**
Apply Lemmas 76.13.2, 76.13.3, 76.13.4 to get a pseudo-coherent object $K$ of $D(\mathcal{O}_ X)$. Choosing affine $U$ in Lemma 76.13.5 it follows immediately that $K$ restricts to $K_ n$ over $X_ n$.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)