Lemma 91.16.5. Let $\mathcal{C}$ be a site. Let $\mathcal{O} \to \mathcal{O}_0$ be a surjection of sheaves of rings. Assume given the following data
a complex of $\mathcal{O}$-modules $\mathcal{F}^\bullet $,
a complex $\mathcal{K}_0^\bullet $ of $\mathcal{O}_0$-modules,
a quasi-isomorphism $\mathcal{K}_0^\bullet \to \mathcal{F}^\bullet \otimes _\mathcal {O} \mathcal{O}_0$,
Then there exist a quasi-isomorphism $\mathcal{G}^\bullet \to \mathcal{F}^\bullet $ such that the map of complexes $\mathcal{G}^\bullet \otimes _\mathcal {O} \mathcal{O}_0 \to \mathcal{F}^\bullet \otimes _\mathcal {O} \mathcal{O}_0$ factors through $\mathcal{K}_0^\bullet $ in the homotopy category of complexes of $\mathcal{O}_0$-modules.
Comments (0)