Processing math: 100%

The Stacks project

91.16 Deformations of complexes on ringed topoi

This material is taken from [lieblich-complexes].

The material in this section works in the setting of a first order thickening of ringed topoi as defined in Section 91.9. However, in order to simplify the notation we will assume the underlying sites \mathcal{C} and \mathcal{D} are the same. Moreover, the surjective homomorphism \mathcal{O}' \to \mathcal{O} of sheaves of rings will be denoted \mathcal{O} \to \mathcal{O}_0 as is perhaps more customary in the literature.

Lemma 91.16.1. Let \mathcal{C} be a site. Let \mathcal{O} \to \mathcal{O}_0 be a surjection of sheaves of rings. Assume given the following data

  1. flat \mathcal{O}-modules \mathcal{G}^ n,

  2. maps of \mathcal{O}-modules \mathcal{G}^ n \to \mathcal{G}^{n + 1},

  3. a complex \mathcal{K}_0^\bullet of \mathcal{O}_0-modules,

  4. maps of \mathcal{O}-modules \mathcal{G}^ n \to \mathcal{K}_0^ n

such that

  1. H^ n(\mathcal{K}_0^\bullet ) = 0 for n \gg 0,

  2. \mathcal{G}^ n = 0 for n \gg 0,

  3. with \mathcal{G}^ n_0 = \mathcal{G}^ n \otimes _\mathcal {O} \mathcal{O}_0 the induced maps determine a complex \mathcal{G}_0^\bullet and a map of complexes \mathcal{G}_0^\bullet \to \mathcal{K}_0^\bullet .

Then there exist

  1. flat \mathcal{O}-modules \mathcal{F}^ n,

  2. maps of \mathcal{O}-modules \mathcal{F}^ n \to \mathcal{F}^{n + 1},

  3. maps of \mathcal{O}-modules \mathcal{F}^ n \to \mathcal{K}_0^ n,

  4. maps of \mathcal{O}-modules \mathcal{G}^ n \to \mathcal{F}^ n,

such that \mathcal{F}^ n = 0 for n \gg 0, such that the diagrams

\xymatrix{ \mathcal{G}^ n \ar[r] \ar[d] & \mathcal{G}^{n + 1} \ar[d] \\ \mathcal{F}^ n \ar[r] & \mathcal{F}^{n + 1} }

commute for all n, such that the composition \mathcal{G}^ n \to \mathcal{F}^ n \to \mathcal{K}_0^ n is the given map \mathcal{G}^ n \to \mathcal{K}_0^ n, and such that with \mathcal{F}^ n_0 = \mathcal{F}^ n \otimes _\mathcal {O} \mathcal{O}_0 we obtain a complex \mathcal{F}_0^\bullet and map of complexes \mathcal{F}_0^\bullet \to \mathcal{K}_0^\bullet which is a quasi-isomorphism.

Proof. We will prove by descending induction on e that we can find \mathcal{F}^ n, \mathcal{G}^ n \to \mathcal{F}^ n, and \mathcal{F}^ n \to \mathcal{F}^{n + 1} for n \geq e fitting into a commutative diagram

\xymatrix{ \ldots \ar[r] & \mathcal{G}^{e - 1} \ar[r] \ar@/_2pc/[dd] & \mathcal{G}^ e \ar[d] \ar[r] \ar@/_2pc/[dd] & \mathcal{G}^{e + 1} \ar[d] \ar[r] \ar@/_2pc/[dd]|\hole & \ldots \\ & & \mathcal{F}^ e \ar[d] \ar[r] & \mathcal{F}^{e + 1} \ar[d] \ar[r] & \ldots \\ \ldots \ar[r] & \mathcal{K}_0^{e - 1} \ar[r] & \mathcal{K}_0^ e \ar[r] & \mathcal{K}_0^{e + 1} \ar[r] & \ldots }

such that \mathcal{F}_0^\bullet is a complex, the induced map \mathcal{F}_0^\bullet \to \mathcal{K}_0^\bullet induces an isomorphism on H^ n for n > e and a surjection for n = e. For e \gg 0 this is true because we can take \mathcal{F}^ n = 0 for n \geq e in that case by assumptions (a) and (b).

Induction step. We have to construct \mathcal{F}^{e - 1} and the maps \mathcal{G}^{e - 1} \to \mathcal{F}^{e - 1}, \mathcal{F}^{e - 1} \to \mathcal{F}^ e, and \mathcal{F}^{e - 1} \to \mathcal{K}_0^{e - 1}. We will choose \mathcal{F}^{e - 1} = A \oplus B \oplus C as a direct sum of three pieces.

For the first we take A = \mathcal{G}^{e - 1} and we choose our map \mathcal{G}^{e - 1} \to \mathcal{F}^{e - 1} to be the inclusion of the first summand. The maps A \to \mathcal{K}^{e - 1}_0 and A \to \mathcal{F}^ e will be the obvious ones.

To choose B we consider the surjection (by induction hypothesis)

\gamma : \mathop{\mathrm{Ker}}(\mathcal{F}^ e_0 \to \mathcal{F}^{e + 1}_0) \longrightarrow \mathop{\mathrm{Ker}}(\mathcal{K}^ e_0 \to \mathcal{K}^{e + 1}_0)/ \mathop{\mathrm{Im}}(\mathcal{K}^{e - 1}_0 \to \mathcal{K}^ e_0)

We can choose a set I, for each i \in I an object U_ i of \mathcal{C}, and sections s_ i \in \mathcal{F}^ e(U_ i), t_ i \in \mathcal{K}^{e - 1}_0(U_ i) such that

  1. s_ i maps to a section of \mathop{\mathrm{Ker}}(\gamma ) \subset \mathop{\mathrm{Ker}}(\mathcal{F}^ e_0 \to \mathcal{F}^{e + 1}_0),

  2. s_ i and t_ i map to the same section of \mathcal{K}^ e_0,

  3. the sections s_ i generate \mathop{\mathrm{Ker}}(\gamma ) as an \mathcal{O}_0-module.

We omit giving the full justification for this; one uses that \mathcal{F}^ e \to \mathcal{F}^ e_0 is a surjective maps of sheaves of sets. Then we set to put

B = \bigoplus \nolimits _{i \in I} j_{U_ i!}\mathcal{O}_{U_ i}

and define the maps B \to \mathcal{F}^ e and B \to \mathcal{K}_0^{e - 1} by using s_ i and t_ i to determine where to send the summand j_{U_ i!}\mathcal{O}_{U_ i}.

With \mathcal{F}^{e - 1} = A \oplus B and maps as above, this produces a diagram as above for e - 1 such that \mathcal{F}_0^\bullet \to \mathcal{K}_0^\bullet induces an isomorphism on H^ n for n \geq e. To get the map to be surjective on H^{e - 1} we choose the summand C as follows. Choose a set J, for each j \in J an object U_ j of \mathcal{C} and a section t_ j of \mathop{\mathrm{Ker}}(\mathcal{K}^{e - 1}_0 \to \mathcal{K}^ e_0) over U_ j such that these sections generate this kernel over \mathcal{O}_0. Then we put

C = \bigoplus \nolimits _{j \in J} j_{U_ j!}\mathcal{O}_{U_ j}

and the zero map C \to \mathcal{F}^ e and the map C \to \mathcal{K}_0^{e - 1} by using s_ j to determine where to the summand j_{U_ j!}\mathcal{O}_{U_ j}. This finishes the induction step by taking \mathcal{F}^{e - 1} = A \oplus B \oplus C and maps as indicated. \square

Lemma 91.16.2. Let \mathcal{C} be a site. Let \mathcal{O} \to \mathcal{O}_0 be a surjection of sheaves of rings whose kernel is an ideal sheaf \mathcal{I} of square zero. For every object K_0 in D^-(\mathcal{O}_0) there is a canonical map

\omega (K_0) : K_0 \longrightarrow K_0 \otimes _{\mathcal{O}_0}^\mathbf {L} \mathcal{I}[2]

in D(\mathcal{O}_0) such that for any map K_0 \to L_0 in D^-(\mathcal{O}_0) the diagram

\xymatrix{ K_0 \ar[d] \ar[rr]_-{\omega (K_0)} & & (K_0 \otimes ^\mathbf {L}_{\mathcal{O}_0} \mathcal{I})[2] \ar[d] \\ L_0 \ar[rr]^-{\omega (L_0)} & & (L_0 \otimes ^\mathbf {L}_{\mathcal{O}_0} \mathcal{I})[2] }

commutes.

Proof. Represent K_0 by any complex \mathcal{K}_0^\bullet of \mathcal{O}_0-modules. Apply Lemma 91.16.1 with \mathcal{G}^ n = 0 for all n. Denote d : \mathcal{F}^ n \to \mathcal{F}^{n + 1} the maps produced by the lemma. Then we see that d \circ d : \mathcal{F}^ n \to \mathcal{F}^{n + 2} is zero modulo \mathcal{I}. Since \mathcal{F}^ n is flat, we see that \mathcal{I}\mathcal{F}^ n = \mathcal{F}^ n \otimes _{\mathcal{O}} \mathcal{I} = \mathcal{F}^ n_0 \otimes _{\mathcal{O}_0} \mathcal{I}. Hence we obtain a canonical map of complexes

d \circ d : \mathcal{F}_0^\bullet \longrightarrow (\mathcal{F}_0^\bullet \otimes _{\mathcal{O}_0} \mathcal{I})[2]

Since \mathcal{F}_0^\bullet is a bounded above complex of flat \mathcal{O}_0-modules, it is K-flat and may be used to compute derived tensor product. Moreover, the map of complexes \mathcal{F}_0^\bullet \to \mathcal{K}_0^\bullet is a quasi-isomorphism by construction. Therefore the source and target of the map just constructed represent K_0 and K_0 \otimes _{\mathcal{O}_0}^\mathbf {L} \mathcal{I}[2] and we obtain our map \omega (K_0).

Let us show that this procedure is compatible with maps of complexes. Namely, let \mathcal{L}_0^\bullet represent another object of D^-(\mathcal{O}_0) and suppose that

\mathcal{K}_0^\bullet \longrightarrow \mathcal{L}_0^\bullet

is a map of complexes. Apply Lemma 91.16.1 for the complex \mathcal{L}_0^\bullet , the flat modules \mathcal{F}^ n, the maps \mathcal{F}^ n \to \mathcal{F}^{n + 1}, and the compositions \mathcal{F}^ n \to \mathcal{K}_0^ n \to \mathcal{L}_0^ n (we apologize for the reversal of letters used). We obtain flat modules \mathcal{G}^ n, maps \mathcal{F}^ n \to \mathcal{G}^ n, maps \mathcal{G}^ n \to \mathcal{G}^{n + 1}, and maps \mathcal{G}^ n \to \mathcal{L}_0^ n with all properties as in the lemma. Then it is clear that

\xymatrix{ \mathcal{F}_0^\bullet \ar[d] \ar[r] & (\mathcal{F}_0^\bullet \otimes _{\mathcal{O}_0} \mathcal{I})[2] \ar[d] \\ \mathcal{G}_0^\bullet \ar[r] & (\mathcal{G}_0^\bullet \otimes _{\mathcal{O}_0} \mathcal{I})[2] }

is a commutative diagram of complexes.

To see that \omega (K_0) is well defined, suppose that we have two complexes \mathcal{K}_0^\bullet and (\mathcal{K}'_0)^\bullet of \mathcal{O}_0-modules representing K_0 and two systems (\mathcal{F}^ n, d : \mathcal{F}^ n \to \mathcal{F}^{n + 1}, \mathcal{F}^ n \to \mathcal{K}_0^ n) and ((\mathcal{F}')^ n, d : (\mathcal{F}')^ n \to (\mathcal{F}')^{n + 1}, (\mathcal{F}')^ n \to \mathcal{K}_0^ n) as above. Then we can choose a complex (\mathcal{K}''_0)^\bullet and quasi-isomorphisms \mathcal{K}_0^\bullet \to (\mathcal{K}''_0)^\bullet and (\mathcal{K}'_0)^\bullet \to (\mathcal{K}''_0)^\bullet realizing the fact that both complexes represent K_0 in the derived category. Next, we apply the result of the previous paragraph to

(\mathcal{K}_0)^\bullet \oplus (\mathcal{K}'_0)^\bullet \longrightarrow (\mathcal{K}''_0)^\bullet

This produces a commutative diagram

\xymatrix{ \mathcal{F}_0^\bullet \oplus (\mathcal{F}'_0)^\bullet \ar[d] \ar[r] & (\mathcal{F}_0^\bullet \otimes _{\mathcal{O}_0} \mathcal{I})[2] \oplus ((\mathcal{F}'_0)^\bullet \otimes _{\mathcal{O}_0} \mathcal{I})[2] \ar[d] \\ \mathcal{G}_0^\bullet \ar[r] & (\mathcal{G}_0^\bullet \otimes _{\mathcal{O}_0} \mathcal{I})[2] }

Since the vertical arrows give quasi-isomorphisms on the summands we conclude the desired commutativity in D(\mathcal{O}_0).

Having established well-definedness, the statement on compatibility with maps is a consequence of the result in the second paragraph. \square

Lemma 91.16.3. Let (\mathcal{C}, \mathcal{O}) be a ringed site. Let \alpha : K \to L be a map of D^-(\mathcal{O}). Let \mathcal{F} be a sheaf of \mathcal{O}-modules. Let n \in \mathbf{Z}.

  1. If H^ i(\alpha ) is an isomorphism for i \geq n, then H^ i(\alpha \otimes _\mathcal {O}^\mathbf {L} \text{id}_\mathcal {F}) is an isomorphism for i \geq n.

  2. If H^ i(\alpha ) is an isomorphism for i > n and surjective for i = n, then H^ i(\alpha \otimes _\mathcal {O}^\mathbf {L} \text{id}_\mathcal {F}) is an isomorphism for i > n and surjective for i = n.

Proof. Choose a distinguished triangle

K \to L \to C \to K[1]

In case (2) we see that H^ i(C) = 0 for i \geq n. Hence H^ i(C \otimes _\mathcal {O}^\mathbf {L} \mathcal{F}) = 0 for i \geq n by (the dual of) Derived Categories, Lemma 13.16.1. This in turn shows that H^ i(\alpha \otimes _\mathcal {O}^\mathbf {L} \text{id}_\mathcal {F}) is an isomorphism for i > n and surjective for i = n. In case (1) we moreover see that H^{n - 1}(L) \to H^{n - 1}(C) is surjective. Considering the diagram

\xymatrix{ H^{n - 1}(L) \otimes _\mathcal {O} \mathcal{F} \ar[r] \ar[d] & H^{n - 1}(C) \otimes _\mathcal {O} \mathcal{F} \ar@{=}[d] \\ H^{n - 1}(L \otimes _\mathcal {O}^\mathbf {L} \mathcal{F}) \ar[r] & H^{n - 1}(C \otimes _\mathcal {O}^\mathbf {L} \mathcal{F}) }

we conclude the lower horizontal arrow is surjective. Combined with what was said before this implies that H^ n(\alpha \otimes _\mathcal {O}^\mathbf {L} \text{id}_\mathcal {F}) is an isomorphism. \square

Lemma 91.16.4. Let \mathcal{C} be a site. Let \mathcal{O} \to \mathcal{O}_0 be a surjection of sheaves of rings whose kernel is an ideal sheaf \mathcal{I} of square zero. For every object K_0 in D^-(\mathcal{O}_0) the following are equivalent

  1. the class \omega (K_0) \in \mathop{\mathrm{Ext}}\nolimits ^2_{\mathcal{O}_0}(K_0, K_0 \otimes _{\mathcal{O}_0} \mathcal{I}) constructed in Lemma 91.16.2 is zero,

  2. there exists K \in D^-(\mathcal{O}) with K \otimes _\mathcal {O}^\mathbf {L} \mathcal{O}_0 = K_0 in D(\mathcal{O}_0).

Proof. Let K be as in (2). Then we can represent K by a bounded above complex \mathcal{F}^\bullet of flat \mathcal{O}-modules. Then \mathcal{F}_0^\bullet = \mathcal{F}^\bullet \otimes _{\mathcal{O}} \mathcal{O}_0 represents K_0 in D(\mathcal{O}_0). Since d_{\mathcal{F}^\bullet } \circ d_{\mathcal{F}^\bullet } = 0 as \mathcal{F}^\bullet is a complex, we see from the very construction of \omega (K_0) that it is zero.

Assume (1). Let \mathcal{F}^ n, d : \mathcal{F}^ n \to \mathcal{F}^{n + 1} be as in the construction of \omega (K_0). The nullity of \omega (K_0) implies that the map

\omega = d \circ d : \mathcal{F}_0^\bullet \longrightarrow (\mathcal{F}_0^\bullet \otimes _{\mathcal{O}_0} \mathcal{I})[2]

is zero in D(\mathcal{O}_0). By definition of the derived category as the localization of the homotopy category of complexes of \mathcal{O}_0-modules, there exists a quasi-isomorphism \alpha : \mathcal{G}_0^\bullet \to \mathcal{F}_0^\bullet such that there exist \mathcal{O}_0-modules maps h^ n : \mathcal{G}_0^ n \to \mathcal{F}_0^{n + 1} \otimes _\mathcal {O} \mathcal{I} with

\omega \circ \alpha = d_{\mathcal{F}_0^\bullet \otimes \mathcal{I}} \circ h + h \circ d_{\mathcal{G}_0^\bullet }

We set

\mathcal{H}^ n = \mathcal{F}^ n \times _{\mathcal{F}^ n_0} \mathcal{G}_0^ n

and we define

d' : \mathcal{H}^ n \longrightarrow \mathcal{H}^{n + 1},\quad (f^ n, g_0^ n) \longmapsto (d(f^ n) - h^ n(g_0^ n), d(g_0^ n))

with obvious notation using that \mathcal{F}_0^{n + 1} \otimes _{\mathcal{O}_0} \mathcal{I} = \mathcal{F}^{n + 1} \otimes _\mathcal {O} \mathcal{I} = \mathcal{I}\mathcal{F}^{n + 1} \subset \mathcal{F}^{n + 1}. Then one checks d' \circ d' = 0 by our choice of h^ n and definition of \omega . Hence \mathcal{H}^\bullet defines an object in D(\mathcal{O}). On the other hand, there is a short exact sequence of complexes of \mathcal{O}-modules

0 \to \mathcal{F}_0^\bullet \otimes _{\mathcal{O}_0} \mathcal{I} \to \mathcal{H}^\bullet \to \mathcal{G}_0^\bullet \to 0

We still have to show that \mathcal{H}^\bullet \otimes _\mathcal {O}^\mathbf {L} \mathcal{O}_0 is isomorphic to K_0. Choose a quasi-isomorphism \mathcal{E}^\bullet \to \mathcal{H}^\bullet where \mathcal{E}^\bullet is a bounded above complex of flat \mathcal{O}-modules. We obtain a commutative diagram

\xymatrix{ 0 \ar[r] & \mathcal{E}^\bullet \otimes _\mathcal {O} \mathcal{I} \ar[d]^\beta \ar[r] & \mathcal{E}^\bullet \ar[d]^\gamma \ar[r] & \mathcal{E}_0^\bullet \ar[d]^\delta \ar[r] & 0 \\ 0 \ar[r] & \mathcal{F}_0^\bullet \otimes _{\mathcal{O}_0} \mathcal{I} \ar[r] & \mathcal{H}^\bullet \ar[r] & \mathcal{G}_0^\bullet \ar[r] & 0 }

We claim that \delta is a quasi-isomorphism. Since H^ i(\delta ) is an isomorphism for i \gg 0, we can use descending induction on n such that H^ i(\delta ) is an isomorphism for i \geq n. Observe that \mathcal{E}^\bullet \otimes _\mathcal {O} \mathcal{I} represents \mathcal{E}_0^\bullet \otimes _{\mathcal{O}_0}^\mathbf {L} \mathcal{I}, that \mathcal{F}_0^\bullet \otimes _{\mathcal{O}_0} \mathcal{I} represents \mathcal{G}_0^\bullet \otimes _{\mathcal{O}_0}^\mathbf {L} \mathcal{I}, and that \beta = \delta \otimes _{\mathcal{O}_0}^\mathbf {L} \text{id}_\mathcal {I} as maps in D(\mathcal{O}_0). This is true because \beta = (\alpha \otimes \text{id}_\mathcal {I}) \circ (\delta \otimes \text{id}_\mathcal {I}). Suppose that H^ i(\delta ) is an isomorphism in degrees \geq n. Then the same is true for \beta by what we just said and Lemma 91.16.3. Then we can look at the diagram

\xymatrix{ H^{n - 1}(\mathcal{E}^\bullet \otimes _\mathcal {O} \mathcal{I}) \ar[r] \ar[d]^{H^{n - 1}(\beta )} & H^{n - 1}(\mathcal{E}^\bullet ) \ar[r] \ar[d] & H^{n - 1}(\mathcal{E}_0^\bullet ) \ar[r] \ar[d]^{H^{n - 1}(\delta )} & H^ n(\mathcal{E}^\bullet \otimes _\mathcal {O} \mathcal{I}) \ar[r] \ar[d]^{H^ n(\beta )} & H^ n(\mathcal{E}^\bullet ) \ar[d] \\ H^{n - 1}(\mathcal{F}_0^\bullet \otimes _\mathcal {O} \mathcal{I}) \ar[r] & H^{n - 1}(\mathcal{H}^\bullet ) \ar[r] & H^{n - 1}(\mathcal{G}_0^\bullet ) \ar[r] & H^ n(\mathcal{F}_0^\bullet \otimes _\mathcal {O} \mathcal{I}) \ar[r] & H^ n(\mathcal{H}^\bullet ) }

Using Homology, Lemma 12.5.19 we see that H^{n - 1}(\delta ) is surjective. This in turn implies that H^{n - 1}(\beta ) is surjective by Lemma 91.16.3. Using Homology, Lemma 12.5.19 again we see that H^{n - 1}(\delta ) is an isomorphism. The claim holds by induction, so \delta is a quasi-isomorphism which is what we wanted to show. \square

Lemma 91.16.5. Let \mathcal{C} be a site. Let \mathcal{O} \to \mathcal{O}_0 be a surjection of sheaves of rings. Assume given the following data

  1. a complex of \mathcal{O}-modules \mathcal{F}^\bullet ,

  2. a complex \mathcal{K}_0^\bullet of \mathcal{O}_0-modules,

  3. a quasi-isomorphism \mathcal{K}_0^\bullet \to \mathcal{F}^\bullet \otimes _\mathcal {O} \mathcal{O}_0,

Then there exist a quasi-isomorphism \mathcal{G}^\bullet \to \mathcal{F}^\bullet such that the map of complexes \mathcal{G}^\bullet \otimes _\mathcal {O} \mathcal{O}_0 \to \mathcal{F}^\bullet \otimes _\mathcal {O} \mathcal{O}_0 factors through \mathcal{K}_0^\bullet in the homotopy category of complexes of \mathcal{O}_0-modules.

Proof. Set \mathcal{F}_0^\bullet = \mathcal{F}^\bullet \otimes _\mathcal {O} \mathcal{O}_0. By Derived Categories, Lemma 13.9.8 there exists a factorization

\mathcal{K}_0^\bullet \to \mathcal{L}_0^\bullet \to \mathcal{F}_0^\bullet

of the given map such that the first arrow has an inverse up to homotopy and the second arrow is termwise split surjective. Hence we may assume that \mathcal{K}_0^\bullet \to \mathcal{F}_0^\bullet is termwise surjective. In that case we take

\mathcal{G}^ n = \mathcal{F}^ n \times _{\mathcal{F}^ n_0} \mathcal{K}_0^ n

and everything is clear. \square

Lemma 91.16.6. Let \mathcal{C} be a site. Let \mathcal{O} \to \mathcal{O}_0 be a surjection of sheaves of rings whose kernel is an ideal sheaf \mathcal{I} of square zero. Let K, L \in D^-(\mathcal{O}). Set K_0 = K \otimes _\mathcal {O}^\mathbf {L} \mathcal{O}_0 and L_0 = L \otimes _\mathcal {O}^\mathbf {L} \mathcal{O}_0 in D^-(\mathcal{O}_0). Given \alpha _0 : K_0 \to L_0 in D(\mathcal{O}_0) there is a canonical element

o(\alpha _0) \in \mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_0}(K_0, L_0 \otimes _{\mathcal{O}_0}^\mathbf {L} \mathcal{I})

whose vanishing is necessary and sufficient for the existence of a map \alpha : K \to L in D(\mathcal{O}) with \alpha _0 = \alpha \otimes _\mathcal {O}^\mathbf {L} \text{id}.

Proof. Finding \alpha : K \to L lifing \alpha _0 is the same as finding \alpha : K \to L such that the composition K \xrightarrow {\alpha } L \to L_0 is equal to the composition K \to K_0 \xrightarrow {\alpha _0} L_0. The short exact sequence 0 \to \mathcal{I} \to \mathcal{O} \to \mathcal{O}_0 \to 0 gives rise to a canonical distinguished triangle

L \otimes _\mathcal {O}^\mathbf {L} \mathcal{I} \to L \to L_0 \to (L \otimes _\mathcal {O}^\mathbf {L} \mathcal{I})[1]

in D(\mathcal{O}). By Derived Categories, Lemma 13.4.2 the composition

K \to K_0 \xrightarrow {\alpha _0} L_0 \to (L \otimes _\mathcal {O}^\mathbf {L} \mathcal{I})[1]

is zero if and only if we can find \alpha : K \to L lifting \alpha _0. The composition is an element in

\mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O})}(K, (L \otimes _\mathcal {O}^\mathbf {L} \mathcal{I})[1]) = \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_0)}(K_0, (L \otimes _\mathcal {O}^\mathbf {L} \mathcal{I})[1]) = \mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_0}(K_0, L_0 \otimes _{\mathcal{O}_0}^\mathbf {L} \mathcal{I})

by adjunction. \square

Lemma 91.16.7. Let \mathcal{C} be a site. Let \mathcal{O} \to \mathcal{O}_0 be a surjection of sheaves of rings whose kernel is an ideal sheaf \mathcal{I} of square zero. Let K_0 \in D^-(\mathcal{O}). A lift of K_0 is a pair (K, \alpha _0) consisting of an object K in D^-(\mathcal{O}) and an isomorphism \alpha _0 : K \otimes _\mathcal {O}^\mathbf {L} \mathcal{O}_0 \to K_0 in D(\mathcal{O}_0).

  1. Given a lift (K, \alpha ) the group of automorphism of the pair is canonically the cokernel of a map

    \mathop{\mathrm{Ext}}\nolimits ^{-1}_{\mathcal{O}_0}(K_0, K_0) \longrightarrow \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_0}(K_0, K_0 \otimes _{\mathcal{O}_0}^\mathbf {L} \mathcal{I})
  2. If there is a lift, then the set of isomorphism classes of lifts is principal homogenenous under \mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_0}(K_0, K_0 \otimes _{\mathcal{O}_0}^\mathbf {L} \mathcal{I}).

Proof. An automorphism of (K, \alpha ) is a map \varphi : K \to K in D(\mathcal{O}) with \varphi \otimes _\mathcal {O} \text{id}_{\mathcal{O}_0} = \text{id}. This is the same thing as saying that

K \xrightarrow {\varphi - \text{id}} K \to K \otimes _\mathcal {O}^\mathbf {L} \mathcal{O}_0

is zero. We conclude the group of automorphisms is the cokernel of a map

\mathop{\mathrm{Hom}}\nolimits _\mathcal {O}(K, K_0[-1]) \longrightarrow \mathop{\mathrm{Hom}}\nolimits _\mathcal {O}(K, K_0 \otimes _{\mathcal{O}_0}^\mathbf {L} \mathcal{I})

by the distinguished triangle

K \otimes _\mathcal {O}^\mathbf {L} \mathcal{I} \to K \to K \otimes _\mathcal {O}^\mathbf {L} \mathcal{O}_0 \to (K \otimes _\mathcal {O}^\mathbf {L} \mathcal{I})[1]

in D(\mathcal{O}) and Derived Categories, Lemma 13.4.2. To translate into the groups in the lemma use adjunction of the restriction functor D(\mathcal{O}_0) \to D(\mathcal{O}) and - \otimes _\mathcal {O} \mathcal{O}_0 : D(\mathcal{O}) \to D(\mathcal{O}_0). This proves (1).

Proof of (2). Assume that K_0 = K \otimes _\mathcal {O}^\mathbf {L} \mathcal{O}_0 in D(\mathcal{O}). By Lemma 91.16.6 the map sending a lift (K', \alpha _0) to the obstruction o(\alpha _0) to lifting \alpha _0 defines a canonical injective map from the set of isomomorphism classes of pairs to \mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_0}(K_0, K_0 \otimes _{\mathcal{O}_0}^\mathbf {L} \mathcal{I}). To finish the proof we show that it is surjective. Pick \xi : K_0 \to (K_0 \otimes _{\mathcal{O}_0}^\mathbf {L} \mathcal{I})[1] in the \mathop{\mathrm{Ext}}\nolimits ^1 of the lemma. Choose a bounded above complex \mathcal{F}^\bullet of flat \mathcal{O}-modules representing K. The map \xi can be represented as t \circ s^{-1} where s : \mathcal{K}_0^\bullet \to \mathcal{F}_0^\bullet is a quasi-isomorphism and t : \mathcal{K}_0^\bullet \to \mathcal{F}_0^\bullet \otimes _{\mathcal{O}_0} \mathcal{I}[1] is a map of complexes. By Lemma 91.16.5 we can assume there exists a quasi-isomorphism \mathcal{G}^\bullet \to \mathcal{F}^\bullet of complexes of \mathcal{O}-modules such that \mathcal{G}_0^\bullet \to \mathcal{F}_0^\bullet factors through s up to homotopy. We may and do replace \mathcal{G}^\bullet by a bounded above complex of flat \mathcal{O}-modules (by picking a qis from such to \mathcal{G}^\bullet and replacing). Then we see that \xi is represented by a map of complexes t : \mathcal{G}_0^\bullet \to \mathcal{F}_0^\bullet \otimes _{\mathcal{O}_0} \mathcal{I}[1] and the quasi-isomorphism \mathcal{G}_0^\bullet \to \mathcal{F}_0^\bullet . Set

\mathcal{H}^ n = \mathcal{F}^ n \times _{\mathcal{F}_0^ n} \mathcal{G}_0^ n

with differentials

\mathcal{H}^ n \to \mathcal{H}^{n + 1},\quad (f^ n, g_0^ n) \mapsto (d(f^ n) + t(g_0^ n), d(g_0^ n))

This makes sense as \mathcal{F}_0^{n + 1} \otimes _{\mathcal{O}_0} \mathcal{I} = \mathcal{F}^{n + 1} \otimes _\mathcal {O} \mathcal{I} = \mathcal{I}\mathcal{F}^{n + 1} \subset \mathcal{F}^{n + 1}. We omit the computation that shows that \mathcal{H}^\bullet is a complex of \mathcal{O}-modules. By construction there is a short exact sequence

0 \to \mathcal{F}_0^\bullet \otimes _{\mathcal{O}_0} \mathcal{I} \to \mathcal{H}^\bullet \to \mathcal{G}_0^\bullet \to 0

of complexes of \mathcal{O}-modules. Exactly as in the proof of Lemma 91.16.4 one shows that this sequence induces an isomorphism \alpha _0 : \mathcal{H}^\bullet \otimes _\mathcal {O}^\mathbf {L} \mathcal{O}_0 \to \mathcal{G}_0^\bullet in D(\mathcal{O}_0). In other words, we have produced a pair (\mathcal{H}^\bullet , \alpha _0). We omit the verification that o(\alpha _0) = \xi ; hint: o(\alpha _0) can be computed explicitly in this case as we have maps \mathcal{H}^ n \to \mathcal{F}^ n (not compatible with differentials) lifting the components of \alpha _0. This finishes the proof. \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.