91.16 Deformations of complexes on ringed topoi
This material is taken from [lieblich-complexes].
The material in this section works in the setting of a first order thickening of ringed topoi as defined in Section 91.9. However, in order to simplify the notation we will assume the underlying sites \mathcal{C} and \mathcal{D} are the same. Moreover, the surjective homomorphism \mathcal{O}' \to \mathcal{O} of sheaves of rings will be denoted \mathcal{O} \to \mathcal{O}_0 as is perhaps more customary in the literature.
Lemma 91.16.1. Let \mathcal{C} be a site. Let \mathcal{O} \to \mathcal{O}_0 be a surjection of sheaves of rings. Assume given the following data
flat \mathcal{O}-modules \mathcal{G}^ n,
maps of \mathcal{O}-modules \mathcal{G}^ n \to \mathcal{G}^{n + 1},
a complex \mathcal{K}_0^\bullet of \mathcal{O}_0-modules,
maps of \mathcal{O}-modules \mathcal{G}^ n \to \mathcal{K}_0^ n
such that
H^ n(\mathcal{K}_0^\bullet ) = 0 for n \gg 0,
\mathcal{G}^ n = 0 for n \gg 0,
with \mathcal{G}^ n_0 = \mathcal{G}^ n \otimes _\mathcal {O} \mathcal{O}_0 the induced maps determine a complex \mathcal{G}_0^\bullet and a map of complexes \mathcal{G}_0^\bullet \to \mathcal{K}_0^\bullet .
Then there exist
flat \mathcal{O}-modules \mathcal{F}^ n,
maps of \mathcal{O}-modules \mathcal{F}^ n \to \mathcal{F}^{n + 1},
maps of \mathcal{O}-modules \mathcal{F}^ n \to \mathcal{K}_0^ n,
maps of \mathcal{O}-modules \mathcal{G}^ n \to \mathcal{F}^ n,
such that \mathcal{F}^ n = 0 for n \gg 0, such that the diagrams
\xymatrix{ \mathcal{G}^ n \ar[r] \ar[d] & \mathcal{G}^{n + 1} \ar[d] \\ \mathcal{F}^ n \ar[r] & \mathcal{F}^{n + 1} }
commute for all n, such that the composition \mathcal{G}^ n \to \mathcal{F}^ n \to \mathcal{K}_0^ n is the given map \mathcal{G}^ n \to \mathcal{K}_0^ n, and such that with \mathcal{F}^ n_0 = \mathcal{F}^ n \otimes _\mathcal {O} \mathcal{O}_0 we obtain a complex \mathcal{F}_0^\bullet and map of complexes \mathcal{F}_0^\bullet \to \mathcal{K}_0^\bullet which is a quasi-isomorphism.
Proof.
We will prove by descending induction on e that we can find \mathcal{F}^ n, \mathcal{G}^ n \to \mathcal{F}^ n, and \mathcal{F}^ n \to \mathcal{F}^{n + 1} for n \geq e fitting into a commutative diagram
\xymatrix{ \ldots \ar[r] & \mathcal{G}^{e - 1} \ar[r] \ar@/_2pc/[dd] & \mathcal{G}^ e \ar[d] \ar[r] \ar@/_2pc/[dd] & \mathcal{G}^{e + 1} \ar[d] \ar[r] \ar@/_2pc/[dd]|\hole & \ldots \\ & & \mathcal{F}^ e \ar[d] \ar[r] & \mathcal{F}^{e + 1} \ar[d] \ar[r] & \ldots \\ \ldots \ar[r] & \mathcal{K}_0^{e - 1} \ar[r] & \mathcal{K}_0^ e \ar[r] & \mathcal{K}_0^{e + 1} \ar[r] & \ldots }
such that \mathcal{F}_0^\bullet is a complex, the induced map \mathcal{F}_0^\bullet \to \mathcal{K}_0^\bullet induces an isomorphism on H^ n for n > e and a surjection for n = e. For e \gg 0 this is true because we can take \mathcal{F}^ n = 0 for n \geq e in that case by assumptions (a) and (b).
Induction step. We have to construct \mathcal{F}^{e - 1} and the maps \mathcal{G}^{e - 1} \to \mathcal{F}^{e - 1}, \mathcal{F}^{e - 1} \to \mathcal{F}^ e, and \mathcal{F}^{e - 1} \to \mathcal{K}_0^{e - 1}. We will choose \mathcal{F}^{e - 1} = A \oplus B \oplus C as a direct sum of three pieces.
For the first we take A = \mathcal{G}^{e - 1} and we choose our map \mathcal{G}^{e - 1} \to \mathcal{F}^{e - 1} to be the inclusion of the first summand. The maps A \to \mathcal{K}^{e - 1}_0 and A \to \mathcal{F}^ e will be the obvious ones.
To choose B we consider the surjection (by induction hypothesis)
\gamma : \mathop{\mathrm{Ker}}(\mathcal{F}^ e_0 \to \mathcal{F}^{e + 1}_0) \longrightarrow \mathop{\mathrm{Ker}}(\mathcal{K}^ e_0 \to \mathcal{K}^{e + 1}_0)/ \mathop{\mathrm{Im}}(\mathcal{K}^{e - 1}_0 \to \mathcal{K}^ e_0)
We can choose a set I, for each i \in I an object U_ i of \mathcal{C}, and sections s_ i \in \mathcal{F}^ e(U_ i), t_ i \in \mathcal{K}^{e - 1}_0(U_ i) such that
s_ i maps to a section of \mathop{\mathrm{Ker}}(\gamma ) \subset \mathop{\mathrm{Ker}}(\mathcal{F}^ e_0 \to \mathcal{F}^{e + 1}_0),
s_ i and t_ i map to the same section of \mathcal{K}^ e_0,
the sections s_ i generate \mathop{\mathrm{Ker}}(\gamma ) as an \mathcal{O}_0-module.
We omit giving the full justification for this; one uses that \mathcal{F}^ e \to \mathcal{F}^ e_0 is a surjective maps of sheaves of sets. Then we set to put
B = \bigoplus \nolimits _{i \in I} j_{U_ i!}\mathcal{O}_{U_ i}
and define the maps B \to \mathcal{F}^ e and B \to \mathcal{K}_0^{e - 1} by using s_ i and t_ i to determine where to send the summand j_{U_ i!}\mathcal{O}_{U_ i}.
With \mathcal{F}^{e - 1} = A \oplus B and maps as above, this produces a diagram as above for e - 1 such that \mathcal{F}_0^\bullet \to \mathcal{K}_0^\bullet induces an isomorphism on H^ n for n \geq e. To get the map to be surjective on H^{e - 1} we choose the summand C as follows. Choose a set J, for each j \in J an object U_ j of \mathcal{C} and a section t_ j of \mathop{\mathrm{Ker}}(\mathcal{K}^{e - 1}_0 \to \mathcal{K}^ e_0) over U_ j such that these sections generate this kernel over \mathcal{O}_0. Then we put
C = \bigoplus \nolimits _{j \in J} j_{U_ j!}\mathcal{O}_{U_ j}
and the zero map C \to \mathcal{F}^ e and the map C \to \mathcal{K}_0^{e - 1} by using s_ j to determine where to the summand j_{U_ j!}\mathcal{O}_{U_ j}. This finishes the induction step by taking \mathcal{F}^{e - 1} = A \oplus B \oplus C and maps as indicated.
\square
Lemma 91.16.2. Let \mathcal{C} be a site. Let \mathcal{O} \to \mathcal{O}_0 be a surjection of sheaves of rings whose kernel is an ideal sheaf \mathcal{I} of square zero. For every object K_0 in D^-(\mathcal{O}_0) there is a canonical map
\omega (K_0) : K_0 \longrightarrow K_0 \otimes _{\mathcal{O}_0}^\mathbf {L} \mathcal{I}[2]
in D(\mathcal{O}_0) such that for any map K_0 \to L_0 in D^-(\mathcal{O}_0) the diagram
\xymatrix{ K_0 \ar[d] \ar[rr]_-{\omega (K_0)} & & (K_0 \otimes ^\mathbf {L}_{\mathcal{O}_0} \mathcal{I})[2] \ar[d] \\ L_0 \ar[rr]^-{\omega (L_0)} & & (L_0 \otimes ^\mathbf {L}_{\mathcal{O}_0} \mathcal{I})[2] }
commutes.
Proof.
Represent K_0 by any complex \mathcal{K}_0^\bullet of \mathcal{O}_0-modules. Apply Lemma 91.16.1 with \mathcal{G}^ n = 0 for all n. Denote d : \mathcal{F}^ n \to \mathcal{F}^{n + 1} the maps produced by the lemma. Then we see that d \circ d : \mathcal{F}^ n \to \mathcal{F}^{n + 2} is zero modulo \mathcal{I}. Since \mathcal{F}^ n is flat, we see that \mathcal{I}\mathcal{F}^ n = \mathcal{F}^ n \otimes _{\mathcal{O}} \mathcal{I} = \mathcal{F}^ n_0 \otimes _{\mathcal{O}_0} \mathcal{I}. Hence we obtain a canonical map of complexes
d \circ d : \mathcal{F}_0^\bullet \longrightarrow (\mathcal{F}_0^\bullet \otimes _{\mathcal{O}_0} \mathcal{I})[2]
Since \mathcal{F}_0^\bullet is a bounded above complex of flat \mathcal{O}_0-modules, it is K-flat and may be used to compute derived tensor product. Moreover, the map of complexes \mathcal{F}_0^\bullet \to \mathcal{K}_0^\bullet is a quasi-isomorphism by construction. Therefore the source and target of the map just constructed represent K_0 and K_0 \otimes _{\mathcal{O}_0}^\mathbf {L} \mathcal{I}[2] and we obtain our map \omega (K_0).
Let us show that this procedure is compatible with maps of complexes. Namely, let \mathcal{L}_0^\bullet represent another object of D^-(\mathcal{O}_0) and suppose that
\mathcal{K}_0^\bullet \longrightarrow \mathcal{L}_0^\bullet
is a map of complexes. Apply Lemma 91.16.1 for the complex \mathcal{L}_0^\bullet , the flat modules \mathcal{F}^ n, the maps \mathcal{F}^ n \to \mathcal{F}^{n + 1}, and the compositions \mathcal{F}^ n \to \mathcal{K}_0^ n \to \mathcal{L}_0^ n (we apologize for the reversal of letters used). We obtain flat modules \mathcal{G}^ n, maps \mathcal{F}^ n \to \mathcal{G}^ n, maps \mathcal{G}^ n \to \mathcal{G}^{n + 1}, and maps \mathcal{G}^ n \to \mathcal{L}_0^ n with all properties as in the lemma. Then it is clear that
\xymatrix{ \mathcal{F}_0^\bullet \ar[d] \ar[r] & (\mathcal{F}_0^\bullet \otimes _{\mathcal{O}_0} \mathcal{I})[2] \ar[d] \\ \mathcal{G}_0^\bullet \ar[r] & (\mathcal{G}_0^\bullet \otimes _{\mathcal{O}_0} \mathcal{I})[2] }
is a commutative diagram of complexes.
To see that \omega (K_0) is well defined, suppose that we have two complexes \mathcal{K}_0^\bullet and (\mathcal{K}'_0)^\bullet of \mathcal{O}_0-modules representing K_0 and two systems (\mathcal{F}^ n, d : \mathcal{F}^ n \to \mathcal{F}^{n + 1}, \mathcal{F}^ n \to \mathcal{K}_0^ n) and ((\mathcal{F}')^ n, d : (\mathcal{F}')^ n \to (\mathcal{F}')^{n + 1}, (\mathcal{F}')^ n \to \mathcal{K}_0^ n) as above. Then we can choose a complex (\mathcal{K}''_0)^\bullet and quasi-isomorphisms \mathcal{K}_0^\bullet \to (\mathcal{K}''_0)^\bullet and (\mathcal{K}'_0)^\bullet \to (\mathcal{K}''_0)^\bullet realizing the fact that both complexes represent K_0 in the derived category. Next, we apply the result of the previous paragraph to
(\mathcal{K}_0)^\bullet \oplus (\mathcal{K}'_0)^\bullet \longrightarrow (\mathcal{K}''_0)^\bullet
This produces a commutative diagram
\xymatrix{ \mathcal{F}_0^\bullet \oplus (\mathcal{F}'_0)^\bullet \ar[d] \ar[r] & (\mathcal{F}_0^\bullet \otimes _{\mathcal{O}_0} \mathcal{I})[2] \oplus ((\mathcal{F}'_0)^\bullet \otimes _{\mathcal{O}_0} \mathcal{I})[2] \ar[d] \\ \mathcal{G}_0^\bullet \ar[r] & (\mathcal{G}_0^\bullet \otimes _{\mathcal{O}_0} \mathcal{I})[2] }
Since the vertical arrows give quasi-isomorphisms on the summands we conclude the desired commutativity in D(\mathcal{O}_0).
Having established well-definedness, the statement on compatibility with maps is a consequence of the result in the second paragraph.
\square
Lemma 91.16.3. Let (\mathcal{C}, \mathcal{O}) be a ringed site. Let \alpha : K \to L be a map of D^-(\mathcal{O}). Let \mathcal{F} be a sheaf of \mathcal{O}-modules. Let n \in \mathbf{Z}.
If H^ i(\alpha ) is an isomorphism for i \geq n, then H^ i(\alpha \otimes _\mathcal {O}^\mathbf {L} \text{id}_\mathcal {F}) is an isomorphism for i \geq n.
If H^ i(\alpha ) is an isomorphism for i > n and surjective for i = n, then H^ i(\alpha \otimes _\mathcal {O}^\mathbf {L} \text{id}_\mathcal {F}) is an isomorphism for i > n and surjective for i = n.
Proof.
Choose a distinguished triangle
K \to L \to C \to K[1]
In case (2) we see that H^ i(C) = 0 for i \geq n. Hence H^ i(C \otimes _\mathcal {O}^\mathbf {L} \mathcal{F}) = 0 for i \geq n by (the dual of) Derived Categories, Lemma 13.16.1. This in turn shows that H^ i(\alpha \otimes _\mathcal {O}^\mathbf {L} \text{id}_\mathcal {F}) is an isomorphism for i > n and surjective for i = n. In case (1) we moreover see that H^{n - 1}(L) \to H^{n - 1}(C) is surjective. Considering the diagram
\xymatrix{ H^{n - 1}(L) \otimes _\mathcal {O} \mathcal{F} \ar[r] \ar[d] & H^{n - 1}(C) \otimes _\mathcal {O} \mathcal{F} \ar@{=}[d] \\ H^{n - 1}(L \otimes _\mathcal {O}^\mathbf {L} \mathcal{F}) \ar[r] & H^{n - 1}(C \otimes _\mathcal {O}^\mathbf {L} \mathcal{F}) }
we conclude the lower horizontal arrow is surjective. Combined with what was said before this implies that H^ n(\alpha \otimes _\mathcal {O}^\mathbf {L} \text{id}_\mathcal {F}) is an isomorphism.
\square
Lemma 91.16.4. Let \mathcal{C} be a site. Let \mathcal{O} \to \mathcal{O}_0 be a surjection of sheaves of rings whose kernel is an ideal sheaf \mathcal{I} of square zero. For every object K_0 in D^-(\mathcal{O}_0) the following are equivalent
the class \omega (K_0) \in \mathop{\mathrm{Ext}}\nolimits ^2_{\mathcal{O}_0}(K_0, K_0 \otimes _{\mathcal{O}_0} \mathcal{I}) constructed in Lemma 91.16.2 is zero,
there exists K \in D^-(\mathcal{O}) with K \otimes _\mathcal {O}^\mathbf {L} \mathcal{O}_0 = K_0 in D(\mathcal{O}_0).
Proof.
Let K be as in (2). Then we can represent K by a bounded above complex \mathcal{F}^\bullet of flat \mathcal{O}-modules. Then \mathcal{F}_0^\bullet = \mathcal{F}^\bullet \otimes _{\mathcal{O}} \mathcal{O}_0 represents K_0 in D(\mathcal{O}_0). Since d_{\mathcal{F}^\bullet } \circ d_{\mathcal{F}^\bullet } = 0 as \mathcal{F}^\bullet is a complex, we see from the very construction of \omega (K_0) that it is zero.
Assume (1). Let \mathcal{F}^ n, d : \mathcal{F}^ n \to \mathcal{F}^{n + 1} be as in the construction of \omega (K_0). The nullity of \omega (K_0) implies that the map
\omega = d \circ d : \mathcal{F}_0^\bullet \longrightarrow (\mathcal{F}_0^\bullet \otimes _{\mathcal{O}_0} \mathcal{I})[2]
is zero in D(\mathcal{O}_0). By definition of the derived category as the localization of the homotopy category of complexes of \mathcal{O}_0-modules, there exists a quasi-isomorphism \alpha : \mathcal{G}_0^\bullet \to \mathcal{F}_0^\bullet such that there exist \mathcal{O}_0-modules maps h^ n : \mathcal{G}_0^ n \to \mathcal{F}_0^{n + 1} \otimes _\mathcal {O} \mathcal{I} with
\omega \circ \alpha = d_{\mathcal{F}_0^\bullet \otimes \mathcal{I}} \circ h + h \circ d_{\mathcal{G}_0^\bullet }
We set
\mathcal{H}^ n = \mathcal{F}^ n \times _{\mathcal{F}^ n_0} \mathcal{G}_0^ n
and we define
d' : \mathcal{H}^ n \longrightarrow \mathcal{H}^{n + 1},\quad (f^ n, g_0^ n) \longmapsto (d(f^ n) - h^ n(g_0^ n), d(g_0^ n))
with obvious notation using that \mathcal{F}_0^{n + 1} \otimes _{\mathcal{O}_0} \mathcal{I} = \mathcal{F}^{n + 1} \otimes _\mathcal {O} \mathcal{I} = \mathcal{I}\mathcal{F}^{n + 1} \subset \mathcal{F}^{n + 1}. Then one checks d' \circ d' = 0 by our choice of h^ n and definition of \omega . Hence \mathcal{H}^\bullet defines an object in D(\mathcal{O}). On the other hand, there is a short exact sequence of complexes of \mathcal{O}-modules
0 \to \mathcal{F}_0^\bullet \otimes _{\mathcal{O}_0} \mathcal{I} \to \mathcal{H}^\bullet \to \mathcal{G}_0^\bullet \to 0
We still have to show that \mathcal{H}^\bullet \otimes _\mathcal {O}^\mathbf {L} \mathcal{O}_0 is isomorphic to K_0. Choose a quasi-isomorphism \mathcal{E}^\bullet \to \mathcal{H}^\bullet where \mathcal{E}^\bullet is a bounded above complex of flat \mathcal{O}-modules. We obtain a commutative diagram
\xymatrix{ 0 \ar[r] & \mathcal{E}^\bullet \otimes _\mathcal {O} \mathcal{I} \ar[d]^\beta \ar[r] & \mathcal{E}^\bullet \ar[d]^\gamma \ar[r] & \mathcal{E}_0^\bullet \ar[d]^\delta \ar[r] & 0 \\ 0 \ar[r] & \mathcal{F}_0^\bullet \otimes _{\mathcal{O}_0} \mathcal{I} \ar[r] & \mathcal{H}^\bullet \ar[r] & \mathcal{G}_0^\bullet \ar[r] & 0 }
We claim that \delta is a quasi-isomorphism. Since H^ i(\delta ) is an isomorphism for i \gg 0, we can use descending induction on n such that H^ i(\delta ) is an isomorphism for i \geq n. Observe that \mathcal{E}^\bullet \otimes _\mathcal {O} \mathcal{I} represents \mathcal{E}_0^\bullet \otimes _{\mathcal{O}_0}^\mathbf {L} \mathcal{I}, that \mathcal{F}_0^\bullet \otimes _{\mathcal{O}_0} \mathcal{I} represents \mathcal{G}_0^\bullet \otimes _{\mathcal{O}_0}^\mathbf {L} \mathcal{I}, and that \beta = \delta \otimes _{\mathcal{O}_0}^\mathbf {L} \text{id}_\mathcal {I} as maps in D(\mathcal{O}_0). This is true because \beta = (\alpha \otimes \text{id}_\mathcal {I}) \circ (\delta \otimes \text{id}_\mathcal {I}). Suppose that H^ i(\delta ) is an isomorphism in degrees \geq n. Then the same is true for \beta by what we just said and Lemma 91.16.3. Then we can look at the diagram
\xymatrix{ H^{n - 1}(\mathcal{E}^\bullet \otimes _\mathcal {O} \mathcal{I}) \ar[r] \ar[d]^{H^{n - 1}(\beta )} & H^{n - 1}(\mathcal{E}^\bullet ) \ar[r] \ar[d] & H^{n - 1}(\mathcal{E}_0^\bullet ) \ar[r] \ar[d]^{H^{n - 1}(\delta )} & H^ n(\mathcal{E}^\bullet \otimes _\mathcal {O} \mathcal{I}) \ar[r] \ar[d]^{H^ n(\beta )} & H^ n(\mathcal{E}^\bullet ) \ar[d] \\ H^{n - 1}(\mathcal{F}_0^\bullet \otimes _\mathcal {O} \mathcal{I}) \ar[r] & H^{n - 1}(\mathcal{H}^\bullet ) \ar[r] & H^{n - 1}(\mathcal{G}_0^\bullet ) \ar[r] & H^ n(\mathcal{F}_0^\bullet \otimes _\mathcal {O} \mathcal{I}) \ar[r] & H^ n(\mathcal{H}^\bullet ) }
Using Homology, Lemma 12.5.19 we see that H^{n - 1}(\delta ) is surjective. This in turn implies that H^{n - 1}(\beta ) is surjective by Lemma 91.16.3. Using Homology, Lemma 12.5.19 again we see that H^{n - 1}(\delta ) is an isomorphism. The claim holds by induction, so \delta is a quasi-isomorphism which is what we wanted to show.
\square
Lemma 91.16.5. Let \mathcal{C} be a site. Let \mathcal{O} \to \mathcal{O}_0 be a surjection of sheaves of rings. Assume given the following data
a complex of \mathcal{O}-modules \mathcal{F}^\bullet ,
a complex \mathcal{K}_0^\bullet of \mathcal{O}_0-modules,
a quasi-isomorphism \mathcal{K}_0^\bullet \to \mathcal{F}^\bullet \otimes _\mathcal {O} \mathcal{O}_0,
Then there exist a quasi-isomorphism \mathcal{G}^\bullet \to \mathcal{F}^\bullet such that the map of complexes \mathcal{G}^\bullet \otimes _\mathcal {O} \mathcal{O}_0 \to \mathcal{F}^\bullet \otimes _\mathcal {O} \mathcal{O}_0 factors through \mathcal{K}_0^\bullet in the homotopy category of complexes of \mathcal{O}_0-modules.
Proof.
Set \mathcal{F}_0^\bullet = \mathcal{F}^\bullet \otimes _\mathcal {O} \mathcal{O}_0. By Derived Categories, Lemma 13.9.8 there exists a factorization
\mathcal{K}_0^\bullet \to \mathcal{L}_0^\bullet \to \mathcal{F}_0^\bullet
of the given map such that the first arrow has an inverse up to homotopy and the second arrow is termwise split surjective. Hence we may assume that \mathcal{K}_0^\bullet \to \mathcal{F}_0^\bullet is termwise surjective. In that case we take
\mathcal{G}^ n = \mathcal{F}^ n \times _{\mathcal{F}^ n_0} \mathcal{K}_0^ n
and everything is clear.
\square
Lemma 91.16.6. Let \mathcal{C} be a site. Let \mathcal{O} \to \mathcal{O}_0 be a surjection of sheaves of rings whose kernel is an ideal sheaf \mathcal{I} of square zero. Let K, L \in D^-(\mathcal{O}). Set K_0 = K \otimes _\mathcal {O}^\mathbf {L} \mathcal{O}_0 and L_0 = L \otimes _\mathcal {O}^\mathbf {L} \mathcal{O}_0 in D^-(\mathcal{O}_0). Given \alpha _0 : K_0 \to L_0 in D(\mathcal{O}_0) there is a canonical element
o(\alpha _0) \in \mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_0}(K_0, L_0 \otimes _{\mathcal{O}_0}^\mathbf {L} \mathcal{I})
whose vanishing is necessary and sufficient for the existence of a map \alpha : K \to L in D(\mathcal{O}) with \alpha _0 = \alpha \otimes _\mathcal {O}^\mathbf {L} \text{id}.
Proof.
Finding \alpha : K \to L lifing \alpha _0 is the same as finding \alpha : K \to L such that the composition K \xrightarrow {\alpha } L \to L_0 is equal to the composition K \to K_0 \xrightarrow {\alpha _0} L_0. The short exact sequence 0 \to \mathcal{I} \to \mathcal{O} \to \mathcal{O}_0 \to 0 gives rise to a canonical distinguished triangle
L \otimes _\mathcal {O}^\mathbf {L} \mathcal{I} \to L \to L_0 \to (L \otimes _\mathcal {O}^\mathbf {L} \mathcal{I})[1]
in D(\mathcal{O}). By Derived Categories, Lemma 13.4.2 the composition
K \to K_0 \xrightarrow {\alpha _0} L_0 \to (L \otimes _\mathcal {O}^\mathbf {L} \mathcal{I})[1]
is zero if and only if we can find \alpha : K \to L lifting \alpha _0. The composition is an element in
\mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O})}(K, (L \otimes _\mathcal {O}^\mathbf {L} \mathcal{I})[1]) = \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_0)}(K_0, (L \otimes _\mathcal {O}^\mathbf {L} \mathcal{I})[1]) = \mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_0}(K_0, L_0 \otimes _{\mathcal{O}_0}^\mathbf {L} \mathcal{I})
by adjunction.
\square
Lemma 91.16.7. Let \mathcal{C} be a site. Let \mathcal{O} \to \mathcal{O}_0 be a surjection of sheaves of rings whose kernel is an ideal sheaf \mathcal{I} of square zero. Let K_0 \in D^-(\mathcal{O}). A lift of K_0 is a pair (K, \alpha _0) consisting of an object K in D^-(\mathcal{O}) and an isomorphism \alpha _0 : K \otimes _\mathcal {O}^\mathbf {L} \mathcal{O}_0 \to K_0 in D(\mathcal{O}_0).
Given a lift (K, \alpha ) the group of automorphism of the pair is canonically the cokernel of a map
\mathop{\mathrm{Ext}}\nolimits ^{-1}_{\mathcal{O}_0}(K_0, K_0) \longrightarrow \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_0}(K_0, K_0 \otimes _{\mathcal{O}_0}^\mathbf {L} \mathcal{I})
If there is a lift, then the set of isomorphism classes of lifts is principal homogenenous under \mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_0}(K_0, K_0 \otimes _{\mathcal{O}_0}^\mathbf {L} \mathcal{I}).
Proof.
An automorphism of (K, \alpha ) is a map \varphi : K \to K in D(\mathcal{O}) with \varphi \otimes _\mathcal {O} \text{id}_{\mathcal{O}_0} = \text{id}. This is the same thing as saying that
K \xrightarrow {\varphi - \text{id}} K \to K \otimes _\mathcal {O}^\mathbf {L} \mathcal{O}_0
is zero. We conclude the group of automorphisms is the cokernel of a map
\mathop{\mathrm{Hom}}\nolimits _\mathcal {O}(K, K_0[-1]) \longrightarrow \mathop{\mathrm{Hom}}\nolimits _\mathcal {O}(K, K_0 \otimes _{\mathcal{O}_0}^\mathbf {L} \mathcal{I})
by the distinguished triangle
K \otimes _\mathcal {O}^\mathbf {L} \mathcal{I} \to K \to K \otimes _\mathcal {O}^\mathbf {L} \mathcal{O}_0 \to (K \otimes _\mathcal {O}^\mathbf {L} \mathcal{I})[1]
in D(\mathcal{O}) and Derived Categories, Lemma 13.4.2. To translate into the groups in the lemma use adjunction of the restriction functor D(\mathcal{O}_0) \to D(\mathcal{O}) and - \otimes _\mathcal {O} \mathcal{O}_0 : D(\mathcal{O}) \to D(\mathcal{O}_0). This proves (1).
Proof of (2). Assume that K_0 = K \otimes _\mathcal {O}^\mathbf {L} \mathcal{O}_0 in D(\mathcal{O}). By Lemma 91.16.6 the map sending a lift (K', \alpha _0) to the obstruction o(\alpha _0) to lifting \alpha _0 defines a canonical injective map from the set of isomomorphism classes of pairs to \mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_0}(K_0, K_0 \otimes _{\mathcal{O}_0}^\mathbf {L} \mathcal{I}). To finish the proof we show that it is surjective. Pick \xi : K_0 \to (K_0 \otimes _{\mathcal{O}_0}^\mathbf {L} \mathcal{I})[1] in the \mathop{\mathrm{Ext}}\nolimits ^1 of the lemma. Choose a bounded above complex \mathcal{F}^\bullet of flat \mathcal{O}-modules representing K. The map \xi can be represented as t \circ s^{-1} where s : \mathcal{K}_0^\bullet \to \mathcal{F}_0^\bullet is a quasi-isomorphism and t : \mathcal{K}_0^\bullet \to \mathcal{F}_0^\bullet \otimes _{\mathcal{O}_0} \mathcal{I}[1] is a map of complexes. By Lemma 91.16.5 we can assume there exists a quasi-isomorphism \mathcal{G}^\bullet \to \mathcal{F}^\bullet of complexes of \mathcal{O}-modules such that \mathcal{G}_0^\bullet \to \mathcal{F}_0^\bullet factors through s up to homotopy. We may and do replace \mathcal{G}^\bullet by a bounded above complex of flat \mathcal{O}-modules (by picking a qis from such to \mathcal{G}^\bullet and replacing). Then we see that \xi is represented by a map of complexes t : \mathcal{G}_0^\bullet \to \mathcal{F}_0^\bullet \otimes _{\mathcal{O}_0} \mathcal{I}[1] and the quasi-isomorphism \mathcal{G}_0^\bullet \to \mathcal{F}_0^\bullet . Set
\mathcal{H}^ n = \mathcal{F}^ n \times _{\mathcal{F}_0^ n} \mathcal{G}_0^ n
with differentials
\mathcal{H}^ n \to \mathcal{H}^{n + 1},\quad (f^ n, g_0^ n) \mapsto (d(f^ n) + t(g_0^ n), d(g_0^ n))
This makes sense as \mathcal{F}_0^{n + 1} \otimes _{\mathcal{O}_0} \mathcal{I} = \mathcal{F}^{n + 1} \otimes _\mathcal {O} \mathcal{I} = \mathcal{I}\mathcal{F}^{n + 1} \subset \mathcal{F}^{n + 1}. We omit the computation that shows that \mathcal{H}^\bullet is a complex of \mathcal{O}-modules. By construction there is a short exact sequence
0 \to \mathcal{F}_0^\bullet \otimes _{\mathcal{O}_0} \mathcal{I} \to \mathcal{H}^\bullet \to \mathcal{G}_0^\bullet \to 0
of complexes of \mathcal{O}-modules. Exactly as in the proof of Lemma 91.16.4 one shows that this sequence induces an isomorphism \alpha _0 : \mathcal{H}^\bullet \otimes _\mathcal {O}^\mathbf {L} \mathcal{O}_0 \to \mathcal{G}_0^\bullet in D(\mathcal{O}_0). In other words, we have produced a pair (\mathcal{H}^\bullet , \alpha _0). We omit the verification that o(\alpha _0) = \xi ; hint: o(\alpha _0) can be computed explicitly in this case as we have maps \mathcal{H}^ n \to \mathcal{F}^ n (not compatible with differentials) lifting the components of \alpha _0. This finishes the proof.
\square
Comments (0)