The Stacks project

Lemma 91.16.2. Let $\mathcal{C}$ be a site. Let $\mathcal{O} \to \mathcal{O}_0$ be a surjection of sheaves of rings whose kernel is an ideal sheaf $\mathcal{I}$ of square zero. For every object $K_0$ in $D^-(\mathcal{O}_0)$ there is a canonical map

\[ \omega (K_0) : K_0 \longrightarrow K_0 \otimes _{\mathcal{O}_0}^\mathbf {L} \mathcal{I}[2] \]

in $D(\mathcal{O}_0)$ such that for any map $K_0 \to L_0$ in $D^-(\mathcal{O}_0)$ the diagram

\[ \xymatrix{ K_0 \ar[d] \ar[rr]_-{\omega (K_0)} & & (K_0 \otimes ^\mathbf {L}_{\mathcal{O}_0} \mathcal{I})[2] \ar[d] \\ L_0 \ar[rr]^-{\omega (L_0)} & & (L_0 \otimes ^\mathbf {L}_{\mathcal{O}_0} \mathcal{I})[2] } \]

commutes.

Proof. Represent $K_0$ by any complex $\mathcal{K}_0^\bullet $ of $\mathcal{O}_0$-modules. Apply Lemma 91.16.1 with $\mathcal{G}^ n = 0$ for all $n$. Denote $d : \mathcal{F}^ n \to \mathcal{F}^{n + 1}$ the maps produced by the lemma. Then we see that $d \circ d : \mathcal{F}^ n \to \mathcal{F}^{n + 2}$ is zero modulo $\mathcal{I}$. Since $\mathcal{F}^ n$ is flat, we see that $\mathcal{I}\mathcal{F}^ n = \mathcal{F}^ n \otimes _{\mathcal{O}} \mathcal{I} = \mathcal{F}^ n_0 \otimes _{\mathcal{O}_0} \mathcal{I}$. Hence we obtain a canonical map of complexes

\[ d \circ d : \mathcal{F}_0^\bullet \longrightarrow (\mathcal{F}_0^\bullet \otimes _{\mathcal{O}_0} \mathcal{I})[2] \]

Since $\mathcal{F}_0^\bullet $ is a bounded above complex of flat $\mathcal{O}_0$-modules, it is K-flat and may be used to compute derived tensor product. Moreover, the map of complexes $\mathcal{F}_0^\bullet \to \mathcal{K}_0^\bullet $ is a quasi-isomorphism by construction. Therefore the source and target of the map just constructed represent $K_0$ and $K_0 \otimes _{\mathcal{O}_0}^\mathbf {L} \mathcal{I}[2]$ and we obtain our map $\omega (K_0)$.

Let us show that this procedure is compatible with maps of complexes. Namely, let $\mathcal{L}_0^\bullet $ represent another object of $D^-(\mathcal{O}_0)$ and suppose that

\[ \mathcal{K}_0^\bullet \longrightarrow \mathcal{L}_0^\bullet \]

is a map of complexes. Apply Lemma 91.16.1 for the complex $\mathcal{L}_0^\bullet $, the flat modules $\mathcal{F}^ n$, the maps $\mathcal{F}^ n \to \mathcal{F}^{n + 1}$, and the compositions $\mathcal{F}^ n \to \mathcal{K}_0^ n \to \mathcal{L}_0^ n$ (we apologize for the reversal of letters used). We obtain flat modules $\mathcal{G}^ n$, maps $\mathcal{F}^ n \to \mathcal{G}^ n$, maps $\mathcal{G}^ n \to \mathcal{G}^{n + 1}$, and maps $\mathcal{G}^ n \to \mathcal{L}_0^ n$ with all properties as in the lemma. Then it is clear that

\[ \xymatrix{ \mathcal{F}_0^\bullet \ar[d] \ar[r] & (\mathcal{F}_0^\bullet \otimes _{\mathcal{O}_0} \mathcal{I})[2] \ar[d] \\ \mathcal{G}_0^\bullet \ar[r] & (\mathcal{G}_0^\bullet \otimes _{\mathcal{O}_0} \mathcal{I})[2] } \]

is a commutative diagram of complexes.

To see that $\omega (K_0)$ is well defined, suppose that we have two complexes $\mathcal{K}_0^\bullet $ and $(\mathcal{K}'_0)^\bullet $ of $\mathcal{O}_0$-modules representing $K_0$ and two systems $(\mathcal{F}^ n, d : \mathcal{F}^ n \to \mathcal{F}^{n + 1}, \mathcal{F}^ n \to \mathcal{K}_0^ n)$ and $((\mathcal{F}')^ n, d : (\mathcal{F}')^ n \to (\mathcal{F}')^{n + 1}, (\mathcal{F}')^ n \to \mathcal{K}_0^ n)$ as above. Then we can choose a complex $(\mathcal{K}''_0)^\bullet $ and quasi-isomorphisms $\mathcal{K}_0^\bullet \to (\mathcal{K}''_0)^\bullet $ and $(\mathcal{K}'_0)^\bullet \to (\mathcal{K}''_0)^\bullet $ realizing the fact that both complexes represent $K_0$ in the derived category. Next, we apply the result of the previous paragraph to

\[ (\mathcal{K}_0)^\bullet \oplus (\mathcal{K}'_0)^\bullet \longrightarrow (\mathcal{K}''_0)^\bullet \]

This produces a commutative diagram

\[ \xymatrix{ \mathcal{F}_0^\bullet \oplus (\mathcal{F}'_0)^\bullet \ar[d] \ar[r] & (\mathcal{F}_0^\bullet \otimes _{\mathcal{O}_0} \mathcal{I})[2] \oplus ((\mathcal{F}'_0)^\bullet \otimes _{\mathcal{O}_0} \mathcal{I})[2] \ar[d] \\ \mathcal{G}_0^\bullet \ar[r] & (\mathcal{G}_0^\bullet \otimes _{\mathcal{O}_0} \mathcal{I})[2] } \]

Since the vertical arrows give quasi-isomorphisms on the summands we conclude the desired commutativity in $D(\mathcal{O}_0)$.

Having established well-definedness, the statement on compatibility with maps is a consequence of the result in the second paragraph. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0DIU. Beware of the difference between the letter 'O' and the digit '0'.