Lemma 91.16.3. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\alpha : K \to L$ be a map of $D^-(\mathcal{O})$. Let $\mathcal{F}$ be a sheaf of $\mathcal{O}$-modules. Let $n \in \mathbf{Z}$.
If $H^ i(\alpha )$ is an isomorphism for $i \geq n$, then $H^ i(\alpha \otimes _\mathcal {O}^\mathbf {L} \text{id}_\mathcal {F})$ is an isomorphism for $i \geq n$.
If $H^ i(\alpha )$ is an isomorphism for $i > n$ and surjective for $i = n$, then $H^ i(\alpha \otimes _\mathcal {O}^\mathbf {L} \text{id}_\mathcal {F})$ is an isomorphism for $i > n$ and surjective for $i = n$.
Comments (0)