Lemma 101.27.10. Let $\mathcal{P}$ be a property of morphisms of algebraic spaces which is smooth local on the source-and-target and fppf local on the target. Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism of algebraic stacks. Let $\mathcal{Z} \to \mathcal{Y}$ be a surjective, flat, locally finitely presented morphism of algebraic stacks. If the base change $\mathcal{Z} \times _\mathcal {Y} \mathcal{X} \to \mathcal{Z}$ has $\mathcal{P}$, then $f$ has $\mathcal{P}$.
Proof. Assume $\mathcal{Z} \times _\mathcal {Y} \mathcal{X} \to \mathcal{Z}$ has $\mathcal{P}$. Choose an algebraic space $W$ and a surjective smooth morphism $W \to \mathcal{Z}$. Observe that $W \times _\mathcal {Z} \mathcal{Z} \times _\mathcal {Y} \mathcal{X} = W \times _\mathcal {Y} \mathcal{X}$. Thus by the very definition of what it means for $\mathcal{Z} \times _\mathcal {Y} \mathcal{X} \to \mathcal{Z}$ to have $\mathcal{P}$ (see Definition 101.16.2 and Lemma 101.16.1) we see that $W \times _\mathcal {Y} \mathcal{X} \to W$ has $\mathcal{P}$. On the other hand, $W \to \mathcal{Z}$ is surjective, flat, and locally of finite presentation (Morphisms of Spaces, Lemmas 67.37.7 and 67.37.5) hence $W \to \mathcal{Y}$ is surjective, flat, and locally of finite presentation (by Properties of Stacks, Lemma 100.5.2 and Lemmas 101.25.2 and 101.27.2). Thus we may replace $\mathcal{Z}$ by $W$.
Choose an algebraic space $V$ and a surjective smooth morphism $V \to \mathcal{Y}$. Choose an algebraic space $U$ and a surjective smooth morphism $U \to V \times _\mathcal {Y} \mathcal{X}$. We have to show that $U \to V$ has $\mathcal{P}$. Now we base change everything by $W \to \mathcal{Y}$: Set $U' = W \times _\mathcal {Y} U$, $V' = W \times _\mathcal {Y} V$, $\mathcal{X}' = W \times _\mathcal {Y} \mathcal{X}$, and $\mathcal{Y}' = W \times _\mathcal {Y} \mathcal{Y} = W$. Then it is still true that $U' \to V' \times _{\mathcal{Y}'} \mathcal{X}'$ is smooth by base change. Hence by Lemma 101.16.1 used in the definition of $\mathcal{X}' \to \mathcal{Y}' = W$ having $\mathcal{P}$ we see that $U' \to V'$ has $\mathcal{P}$. Then, since $V' \to V$ is surjective, flat, and locally of finite presentation as a base change of $W \to \mathcal{Y}$ we see that $U \to V$ has $\mathcal{P}$ as $\mathcal{P}$ is local in the fppf topology on the target. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: