The Stacks project

Lemma 105.7.2. Let $\mathcal{X}$ be an algebraic stack over a base scheme $S$. Assume $\mathcal{I}_\mathcal {X} \to \mathcal{X}$ is locally of finite presentation. Let $(A' \to A, x)$ be a deformation situation. Then the functor

\[ F : B' \longmapsto \{ \text{lifts of }x|_{B' \otimes _{A'} A}\text{ to } B'\} /\text{isomorphisms} \]

is a sheaf on the site $(\textit{Aff}/\mathop{\mathrm{Spec}}(A'))_{fppf}$ of Topologies, Definition 34.7.8.

Proof. Let $\{ T'_ i \to T'\} _{i = 1, \ldots n}$ be a standard fppf covering of affine schemes over $A'$. Write $T' = \mathop{\mathrm{Spec}}(B')$. As usual denote

\[ T'_{i_0 \ldots i_ p} = T'_{i_0} \times _{T'} \ldots \times _{T'} T'_{i_ p} = \mathop{\mathrm{Spec}}(B'_{i_0 \ldots i_ p}) \]

where the ring is a suitable tensor product. Set $B = B' \otimes _{A'} A$ and $B_{i_0 \ldots i_ p} = B'_{i_0 \ldots i_ p} \otimes _{A'} A$. Denote $y = x|_ B$ and $y_{i_0 \ldots i_ p} = x|_{B_{i_0 \ldots i_ p}}$. Let $\gamma _ i \in F(B'_ i)$ such that $\gamma _{i_0}$ and $\gamma _{i_1}$ map to the same element of $F(B'_{i_0i_1})$. We have to find a unique $\gamma \in F(B')$ mapping to $\gamma _ i$ in $F(B'_ i)$.

Choose an actual object $y'_ i$ of $\textit{Lift}(y_ i, B'_ i)$ in the isomorphism class $\gamma _ i$. Choose isomorphisms $\varphi _{i_0i_1} : y'_{i_0}|_{B'_{i_0i_1}} \to y'_{i_1}|_{B'_{i_0i_1}}$ in the category $\textit{Lift}(y_{i_0i_1}, B'_{i_0i_1})$. If the maps $\varphi _{i_0i_1}$ satisfy the cocycle condition, then we obtain our object $\gamma $ because $\mathcal{X}$ is a stack in the fppf topology. The cocycle condition is that the composition

\[ y'_{i_0}|_{B'_{i_0i_1i_2}} \xrightarrow {\varphi _{i_0i_1}|_{B'_{i_0i_1i_2}}} y'_{i_1}|_{B'_{i_0i_1i_2}} \xrightarrow {\varphi _{i_1i_2}|_{B'_{i_0i_1i_2}}} y'_{i_2}|_{B'_{i_0i_1i_2}} \xrightarrow {\varphi _{i_2i_0}|_{B'_{i_0i_1i_2}}} y'_{i_0}|_{B'_{i_0i_1i_2}} \]

is the identity. If not, then these maps give elements

\[ \delta _{i_0i_1i_2} \in \text{Inf}_{y_{i_0i_1i_2}}(J_{i_0i_1i_2}) = \text{Inf}_ y(J) \otimes _ B B_{i_0i_1i_2} \]

Here $J = \mathop{\mathrm{Ker}}(B' \to B)$ and $J_{i_0 \ldots i_ p} = \mathop{\mathrm{Ker}}(B'_{i_0 \ldots i_ p} \to B_{i_0 \ldots i_ p})$. The equality in the displayed equation holds by Lemma 105.7.1 applied to $B' \to B'_{i_0 \ldots i_ p}$ and $y$ and $y_{i_0 \ldots i_ p}$, the flatness of the maps $B' \to B'_{i_0 \ldots i_ p}$ which also guarantees that $J_{i_0 \ldots i_ p} = J \otimes _{B'} B'_{i_0 \ldots i_ p}$. A computation (omitted) shows that $\delta _{i_0i_1i_2}$ gives a $2$-cocycle in the Čech complex

\[ \prod \text{Inf}_ y(J) \otimes _ B B_{i_0} \to \prod \text{Inf}_ y(J) \otimes _ B B_{i_0i_1} \to \prod \text{Inf}_ y(J) \otimes _ B B_{i_0i_1i_2} \to \ldots \]

By Descent, Lemma 35.9.2 this complex is acyclic in positive degrees and has $H^0 = \text{Inf}_ y(J)$. Since $\text{Inf}_{y_{i_0i_1}}(J_{i_0i_1})$ acts on morphisms (Artin's Axioms, Remark 97.21.4) this means we can modify our choice of $\varphi _{i_0i_1}$ to get to the case where $\delta _{i_0i_1i_2} = 0$.

Uniqueness. We still have to show there is at most one $\gamma $ restricting to $\gamma _ i$ for all $i$. Suppose we have objects $y', z'$ of $\textit{Lift}(y, B')$ and isomorphisms $\psi _ i : y'|_{B'_ i} \to z'|_{B'_ i}$ in $\textit{Lift}(y_ i, B'_ i)$. Then we can consider

\[ \psi _{i_1}^{-1} \circ \psi _{i_0} \in \text{Inf}_{y_{i_0i_1}}(J_{i_0i_1}) = \text{Inf}_ y(J) \otimes _ B B_{i_0i_1} \]

Arguing as before, the obstruction to finding an isomorphism between $y'$ and $z'$ over $B'$ is an element in the $H^1$ of the Čech complex displayed above which is zero. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0DNS. Beware of the difference between the letter 'O' and the digit '0'.