Lemma 108.5.4. Let $B$ be an algebraic space. Let $\pi : X \to Y$ be an affine quasi-finite morphism of algebraic spaces which are separated and of finite presentation over $B$. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_ X$-module. Then $\pi _*$ induces a morphism $\mathrm{Quot}_{\mathcal{F}/X/B} \to \mathrm{Quot}_{\pi _*\mathcal{F}/Y/B}$.
Proof. Set $\mathcal{G} = \pi _*\mathcal{F}$. Since $\pi $ is affine we see that for any scheme $T$ over $B$ we have $\mathcal{G}_ T = \pi _{T, *}\mathcal{F}_ T$ by Cohomology of Spaces, Lemma 69.11.1. Moreover $\pi _ T$ is affine, hence $\pi _{T, *}$ is exact and transforms quotients into quotients. Observe that a quasi-coherent quotient $\mathcal{F}_ T \to \mathcal{Q}$ defines a point of $\mathrm{Quot}_{X/B}$ if and only if $\mathcal{Q}$ defines an object of $\mathcal{C}\! \mathit{oh}_{X/B}$ over $T$ (similarly for $\mathcal{G}$ and $Y$). Since we've seen in Lemma 108.4.4 that $\pi _*$ induces a morphism $\mathcal{C}\! \mathit{oh}_{X/B} \to \mathcal{C}\! \mathit{oh}_{Y/B}$ we see that if $\mathcal{F}_ T \to \mathcal{Q}$ is in $\mathrm{Quot}_{\mathcal{F}/X/B}(T)$, then $\mathcal{G}_ T \to \pi _{T, *}\mathcal{Q}$ is in $\mathrm{Quot}_{\mathcal{G}/Y/B}(T)$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)