Remark 108.5.9 (Numerical invariants). Let $f : X \to B$ and $\mathcal{F}$ be as in the introduction to this section. Let $I$ be a set and for $i \in I$ let $E_ i \in D(\mathcal{O}_ X)$ be perfect. Let $P : I \to \mathbf{Z}$ be a function. Recall that we have a morphism
which sends the element $\mathcal{F}_ T \to \mathcal{Q}$ of $\mathrm{Quot}_{\mathcal{F}/X/B}(T)$ to the object $\mathcal{Q}$ of $\mathcal{C}\! \mathit{oh}_{X/B}$ over $T$, see proof of Quot, Proposition 99.8.4. Hence we can form the fibre product diagram
This is the defining diagram for the algebraic space in the upper left corner. The left vertical arrow is a flat closed immersion which is an open and closed immersion for example if $I$ is finite, or $B$ is locally Noetherian, or $I = \mathbf{Z}$ and $E_ i = \mathcal{L}^{\otimes i}$ for some invertible $\mathcal{O}_ X$-module $\mathcal{L}$ (in the last case we sometimes use the notation $\mathrm{Quot}^{P, \mathcal{L}}_{\mathcal{F}/X/B}$). See Situation 108.4.7 and Lemmas 108.4.8 and 108.4.9 and Example 108.4.10.
Comments (4)
Comment #2815 by David Roberts on
Comment #2816 by Raymond Cheng on
Comment #2817 by Pieter Belmans on
Comment #2918 by Johan on