Lemma 108.5.10. Let f : X \to B and \mathcal{F} be as in the introduction to this section. Let \mathcal{L} be an invertible \mathcal{O}_ X-module. Then tensoring with \mathcal{L} defines an isomorphism
\mathrm{Quot}_{\mathcal{F}/X/B} \longrightarrow \mathrm{Quot}_{\mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{L}/X/B}
Given a numerical polynomial P(t), then setting P'(t) = P(t + 1) this map induces an isomorphism \mathrm{Quot}^ P_{\mathcal{F}/X/B} \longrightarrow \mathrm{Quot}^{P'}_{\mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{L}/X/B} of open and closed substacks.
Proof.
Set \mathcal{G} = \mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{L}. Observe that \mathcal{G}_ T = \mathcal{F}_ T \otimes _{\mathcal{O}_{X_ T}} \mathcal{L}_ T. If \mathcal{F}_ T \to \mathcal{Q} is an element of \mathrm{Quot}_{\mathcal{F}/X/B}(T), then we send it to the element \mathcal{G}_ T \to \mathcal{Q} \otimes _{\mathcal{O}_{X_ T}} \mathcal{L}_ T of \mathrm{Quot}_{\mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{L}/X/B}(T). This is compatible with pullbacks and hence defines a transformation of functors as desired. Since there is an obvious inverse transformation, it is an isomorphism. We omit the proof of the final statement.
\square
Comments (2)
Comment #6304 by Pieter Belmans on
Comment #6416 by Johan on