Lemma 108.7.7. Let $f : X \to B$ be a proper morphism of finite presentation of algebraic spaces. Let $\mathcal{L}$ be an invertible $\mathcal{O}_ X$-module ample on $X/B$, see Divisors on Spaces, Definition 71.14.1. The algebraic space $\mathrm{Hilb}^ P_{X/B}$ parametrizing closed subschemes having Hilbert polynomial $P$ with respect to $\mathcal{L}$ is proper over $B$.
Proof. Recall that $\mathrm{Hilb}_{X/B} = \mathrm{Quot}_{\mathcal{O}_ X/X/B}$, see Quot, Lemma 99.9.2. Thus this lemma is an immediate consequence of Lemma 108.6.3. $\square$
Comments (0)