Lemma 59.67.3. Let $\ell $ be a prime number and $n$ an integer $> 0$. Let $K$ be a field with $G = Gal(K^{sep}/K)$ and let $H \subset G$ be a maximal pro-$\ell $ subgroup with $L/K$ being the corresponding field extension. Then $H^ q_{\acute{e}tale}(\mathop{\mathrm{Spec}}(K),\mathcal{F}) = 0$ for $q \geq n$ and all $\ell $-torsion sheaves $\mathcal{F}$ if and only if $H^ n_{\acute{e}tale}(\mathop{\mathrm{Spec}}(L), \underline{\mathbf{Z}/\ell \mathbf{Z}}) = 0$.

**Proof.**
The forward direction is trivial, so we need only prove the reverse direction. We proceed by induction on $q$. The case of $q = n$ is Lemma 59.67.2. Now let $\mathcal{F}$ be an $\ell $-power torsion sheaf on $\mathop{\mathrm{Spec}}(K)$. Let $f : \mathop{\mathrm{Spec}}(K^{sep}) \rightarrow \mathop{\mathrm{Spec}}(K)$ be the inclusion of a geometric point. Then consider the exact sequence:

Note that $K^{sep}$ may be written as the filtered colimit of finite separable extensions. Thus $f$ is the limit of a directed system of finite étale morphisms. We may, as was seen in the proof of Lemma 59.67.1, conclude that $f$ has vanishing higher direct images. Thus, we may express the higher cohomology of $f_* f^{-1} \mathcal{F}$ as the higher cohomology on the geometric point which clearly vanishes. Hence, as everything here is still $\ell $-torsion, we may use the inductive hypothesis in conjunction with the long-exact cohomology sequence to conclude the result for $q + 1$. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)

There are also: