Lemma 49.10.3. Let $k$ be a field. Let $B = k[x_1, \ldots , x_ n]/(f_1, \ldots , f_ n)$ be a global complete intersection over $k$ of dimension $0$. Then $\omega _{B/k}$ is invertible.
Proof. By Noether normalization, see Algebra, Lemma 10.115.4 we see that there exists a finite injection $k \to B$, i.e., $\dim _ k(B) < \infty $. Hence $\omega _{B/k} = \mathop{\mathrm{Hom}}\nolimits _ k(B, k)$ as a $B$-module. By Dualizing Complexes, Lemma 47.15.8 we see that $R\mathop{\mathrm{Hom}}\nolimits (B, k)$ is a dualizing complex for $B$ and by Dualizing Complexes, Lemma 47.13.3 we see that $R\mathop{\mathrm{Hom}}\nolimits (B, k)$ is equal to $\omega _{B/k}$ placed in degree $0$. Thus it suffices to show that $B$ is Gorenstein (Dualizing Complexes, Lemma 47.21.4). This is true by Dualizing Complexes, Lemma 47.21.7. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)