Lemma 49.10.2. Invertibility of the relative dualizing module.
If A \to B is a quasi-finite flat homomorphism of Noetherian rings, then \omega _{B/A} is an invertible B-module if and only if \omega _{B \otimes _ A \kappa (\mathfrak p)/\kappa (\mathfrak p)} is an invertible B \otimes _ A \kappa (\mathfrak p)-module for all primes \mathfrak p \subset A.
If Y \to X is a quasi-finite flat morphism of Noetherian schemes, then \omega _{Y/X} is invertible if and only if \omega _{Y_ x/x} is invertible for all x \in X.
Comments (0)