Lemma 52.3.5. Let $A$ be a ring. Let $f \in A$. Let $X$ be a scheme over $\mathop{\mathrm{Spec}}(A)$. Let

$\ldots \to \mathcal{F}_3 \to \mathcal{F}_2 \to \mathcal{F}_1$

be an inverse system of $\mathcal{O}_ X$-modules. Assume

1. either there is an $m \geq 1$ such that the image of $H^1(X, \mathcal{F}_ m) \to H^1(X, \mathcal{F}_1)$ is an $A$-module of finite length or $A$ is Noetherian and the intersection of the images of $H^1(X, \mathcal{F}_ m) \to H^1(X, \mathcal{F}_1)$ is a finite $A$-module,

2. the equivalent conditions of Lemma 52.3.1 hold.

Then the inverse system $M_ n = \Gamma (X, \mathcal{F}_ n)$ satisfies the Mittag-Leffler condition.

Proof. Set $I = (f)$. We will use the criterion of Lemma 52.2.2 involving the modules $H^1_ n$. For $m \geq n$ we have $I^ n\mathcal{F}_{m + 1} = \mathcal{F}_{m + 1 - n}$. Thus we see that

$H^1_ n = \bigcap \nolimits _{m \geq 1} \mathop{\mathrm{Im}}\left( H^1(X, \mathcal{F}_ m) \to H^1(X, \mathcal{F}_1) \right)$

is independent of $n$ and $\bigoplus H^1_ n = \bigoplus H^1_1 \cdot f^{n + 1}$. Thus we conclude exactly as in the proof of Lemma 52.3.4. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).