Lemma 52.3.5. Let $A$ be a ring. Let $f \in A$. Let $X$ be a scheme over $\mathop{\mathrm{Spec}}(A)$. Let
be an inverse system of $\mathcal{O}_ X$-modules. Assume
either there is an $m \geq 1$ such that the image of $H^1(X, \mathcal{F}_ m) \to H^1(X, \mathcal{F}_1)$ is an $A$-module of finite length or $A$ is Noetherian and the intersection of the images of $H^1(X, \mathcal{F}_ m) \to H^1(X, \mathcal{F}_1)$ is a finite $A$-module,
the equivalent conditions of Lemma 52.3.1 hold.
Then the inverse system $M_ n = \Gamma (X, \mathcal{F}_ n)$ satisfies the Mittag-Leffler condition.
Comments (0)