The Stacks project

\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

Lemma 49.3.5. Let $A$ be a ring. Let $f \in A$. Let $X$ be a scheme over $\mathop{\mathrm{Spec}}(A)$. Let

\[ \ldots \to \mathcal{F}_3 \to \mathcal{F}_2 \to \mathcal{F}_1 \]

be an inverse system of $\mathcal{O}_ X$-modules. Assume

  1. either there is an $m \geq 1$ such that the image of $H^1(X, \mathcal{F}_ m) \to H^1(X, \mathcal{F}_1)$ is an $A$-module of finite length or $A$ is Noetherian and the intersection of the images of $H^1(X, \mathcal{F}_ m) \to H^1(X, \mathcal{F}_1)$ is a finite $A$-module,

  2. the equivalent conditions of Lemma 49.3.1 hold.

Then the inverse system $M_ n = \Gamma (X, \mathcal{F}_ n)$ satisfies the Mittag-Leffler condition.

Proof. Set $I = (f)$. We will use the criterion of Lemma 49.2.2 involving the modules $H^1_ n$. For $m \geq n$ we have $I^ n\mathcal{F}_{m + 1} = \mathcal{F}_{m + 1 - n}$. Thus we see that

\[ H^1_ n = \bigcap \nolimits _{m \geq 1} \mathop{\mathrm{Im}}\left( H^1(X, \mathcal{F}_ m) \to H^1(X, \mathcal{F}_1) \right) \]

is independent of $n$ and $\bigoplus H^1_ n = \bigoplus H^1_1 \cdot f^{n + 1}$. Thus we conclude exactly as in the proof of Lemma 49.3.4. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0DXG. Beware of the difference between the letter 'O' and the digit '0'.