The Stacks project

Lemma 52.20.1. In Situation 52.16.1 let $(\mathcal{F}_ n)$ be an object of $\textit{Coh}(U, I\mathcal{O}_ U)$. Assume

  1. $A$ is local and $\mathfrak a = \mathfrak m$ is the maximal ideal,

  2. $A$ has a dualizing complex,

  3. $I = (f)$ is a principal ideal for a nonzerodivisor $f \in \mathfrak m$,

  4. $\mathcal{F}_ n$ is a finite locally free $\mathcal{O}_ U/f^ n\mathcal{O}_ U$-module,

  5. if $\mathfrak p \in V(f) \setminus \{ \mathfrak m\} $, then $\text{depth}((A/f)_\mathfrak p) + \dim (A/\mathfrak p) > 1$, and

  6. if $\mathfrak p \not\in V(f)$ and $V(\mathfrak p) \cap V(f) \not= \{ \mathfrak m\} $, then $\text{depth}(A_\mathfrak p) + \dim (A/\mathfrak p) > 3$.

Then $(\mathcal{F}_ n)$ extends canonically to $X$. In particular, if $A$ is complete, then $(\mathcal{F}_ n)$ is the completion of a coherent $\mathcal{O}_ U$-module.

Proof. We will prove this by verifying hypotheses (a), (b), and (c) of Lemma 52.16.10.

Since $\mathcal{F}_ n$ is locally free over $\mathcal{O}_ U/f^ n\mathcal{O}_ U$ we see that we have short exact sequences $0 \to \mathcal{F}_ n \to \mathcal{F}_{n + 1} \to \mathcal{F}_1 \to 0$ for all $n$. Thus condition (b) holds by Cohomology, Lemma 20.36.2.

By induction on $n$ and the short exact sequences $0 \to A/f^ n \to A/f^{n + 1} \to A/f \to 0$ we see that the associated primes of $A/f^ nA$ agree with the associated primes of $A/fA$. Since the associated points of $\mathcal{F}_ n$ correspond to the associated primes of $A/f^ nA$ not equal to $\mathfrak m$ by assumption (3), we conclude that $M_ n = H^0(U, \mathcal{F}_ n)$ is a finite $A$-module by (5) and Local Cohomology, Proposition 51.8.7. Thus hypothesis (c) holds.

To finish the proof it suffices to show that there exists an $n > 1$ such that the image of

\[ H^1(U, \mathcal{F}_ n) \longrightarrow H^1(U, \mathcal{F}_1) \]

has finite length as an $A$-module. Namely, this will imply hypothesis (a) by Cohomology, Lemma 20.36.5. The image is independent of $n$ for $n$ large enough by Lemma 52.5.2. Let $\omega _ A^\bullet $ be a normalized dualizing complex for $A$. By the local duality theorem and Matlis duality (Dualizing Complexes, Lemma 47.18.4 and Proposition 47.7.8) our claim is equivalent to: the image of

\[ \text{Ext}^{-2}_ A(M_1, \omega _ A^\bullet ) \to \text{Ext}^{-2}_ A(M_ n, \omega _ A^\bullet ) \]

has finite length for $n \gg 1$. The modules in question are finite $A$-modules supported at $V(f)$. Thus it suffices to show that this map is zero after localization at a prime $\mathfrak q$ containing $f$ and different from $\mathfrak m$. Let $\omega _{A_\mathfrak q}^\bullet $ be a normalized dualizing complex on $A_\mathfrak q$ and recall that $\omega _{A_\mathfrak q}^\bullet = (\omega _ A^\bullet )_\mathfrak q[\dim (A/\mathfrak q)]$ by Dualizing Complexes, Lemma 47.17.3. Using the local structure of $\mathcal{F}_ n$ given in (4) we find that it suffices to show the vanishing of

\[ \text{Ext}^{-2 + \dim (A/\mathfrak q)}_{A_\mathfrak q}( A_\mathfrak q/f, \omega _{A_\mathfrak q}^\bullet ) \to \text{Ext}^{-2 + \dim (A/\mathfrak q)}_{A_\mathfrak q}( A_\mathfrak q/f^ n, \omega _{A_\mathfrak q}^\bullet ) \]

for $n$ large enough. If $\dim (A/\mathfrak q) > 3$, then this is immediate from Local Cohomology, Lemma 51.9.4. For the other cases we will use the long exact sequence

\[ \ldots \xrightarrow {f^ n} H^{-1}(\omega _{A_\mathfrak q}^\bullet ) \to \text{Ext}^{-1}_{A_\mathfrak q}( A_\mathfrak q/f^ n, \omega _{A_\mathfrak q}^\bullet ) \to H^0(\omega _{A_\mathfrak q}^\bullet ) \xrightarrow {f^ n} H^0(\omega _{A_\mathfrak q}^\bullet ) \to \text{Ext}^0_{A_\mathfrak q}( A_\mathfrak q/f^ n, \omega _{A_\mathfrak q}^\bullet ) \to 0 \]

If $\dim (A/\mathfrak q) = 2$, then $H^0(\omega _{A_\mathfrak q}^\bullet ) = 0$ because $\text{depth}(A_\mathfrak q) \geq 1$ as $f$ is a nonzerodivisor. Thus the long exact sequence shows the condition is that

\[ f^{n - 1} : H^{-1}(\omega _{A_\mathfrak q}^\bullet )/f \to H^{-1}(\omega _{A_\mathfrak q}^\bullet )/f^ n \]

is zero. Now $H^{-1}(\omega ^\bullet _\mathfrak q)$ is a finite module supported in the primes $\mathfrak p \subset A_\mathfrak q$ such that $\text{depth}(A_\mathfrak p) + \dim ((A/\mathfrak p)_\mathfrak q) \leq 1$. Since $\dim ((A/\mathfrak p)_\mathfrak q) = \dim (A/\mathfrak p) - 2$ condition (6) tells us these primes are contained in $V(f)$. Thus the desired vanishing for $n$ large enough. Finally, if $\dim (A/\mathfrak q) = 1$, then condition (5) combined with the fact that $f$ is a nonzerodivisor insures that $A_\mathfrak q$ has depth at least $2$. Hence $H^0(\omega _{A_\mathfrak q}^\bullet ) = H^{-1}(\omega _{A_\mathfrak q}^\bullet ) = 0$ and the long exact sequence shows the claim is equivalent to the vanishing of

\[ f^{n - 1} : H^{-2}(\omega _{A_\mathfrak q}^\bullet )/f \to H^{-2}(\omega _{A_\mathfrak q}^\bullet )/f^ n \]

Now $H^{-2}(\omega ^\bullet _\mathfrak q)$ is a finite module supported in the primes $\mathfrak p \subset A_\mathfrak q$ such that $\text{depth}(A_\mathfrak p) + \dim ((A/\mathfrak p)_\mathfrak q) \leq 2$. By condition (6) all of these primes are contained in $V(f)$. Thus the desired vanishing for $n$ large enough. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0DXU. Beware of the difference between the letter 'O' and the digit '0'.