Proof.
Since $\mathcal{C}\! \mathit{urves}\longrightarrow \mathop{\mathrm{Spec}}(\mathbf{Z})$ is locally of finite presentation (Lemma 109.5.3) formation of the open substack where $\mathcal{C}\! \mathit{urves}\longrightarrow \mathop{\mathrm{Spec}}(\mathbf{Z})$ is smooth commutes with flat base change (Morphisms of Stacks, Lemma 101.33.6). Since the Cohen ring $\Lambda $ is flat over $\mathbf{Z}$, we may work over $\Lambda $. In other words, we are trying to prove that
\[ \Lambda \text{-}\mathcal{C}\! \mathit{urves}\longrightarrow \mathop{\mathrm{Spec}}(\Lambda ) \]
is smooth in an open neighbourhood of the point $x_0 : \mathop{\mathrm{Spec}}(k) \to \Lambda \text{-}\mathcal{C}\! \mathit{urves}$ defined by $X/k$ if and only if $\mathcal{D}\! \mathit{ef}_ X$ is unobstructed.
The lemma now follows from Geometry of Stacks, Lemma 107.2.7 and the equality
\[ \mathcal{D}\! \mathit{ef}_ X = \mathcal{F}_{\Lambda \text{-}\mathcal{C}\! \mathit{urves}, k, x_0} \]
This equality is not completely trivial to esthablish. Namely, on the left hand side we have the deformation category classifying all flat deformations $Y \to \mathop{\mathrm{Spec}}(A)$ of $X$ as a scheme over $A \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}_\Lambda )$. On the right hand side we have the deformation category classifying all flat morphisms $Y \to \mathop{\mathrm{Spec}}(A)$ with special fibre $X$ where $Y$ is an algebraic space and $Y \to \mathop{\mathrm{Spec}}(A)$ is proper, of finite presentation, and of relative dimension $\leq 1$. Since $A$ is Artinian, we find that $Y$ is a scheme for example by Spaces over Fields, Lemma 72.9.3. Thus it remains to show: a flat deformation $Y \to \mathop{\mathrm{Spec}}(A)$ of $X$ as a scheme over an Artinian local ring $A$ with residue field $k$ is proper, of finite presentation, and of relative dimension $\leq 1$. Relative dimension is defined in terms of fibres and hence holds automatically for $Y/A$ since it holds for $X/k$. The morphism $Y \to \mathop{\mathrm{Spec}}(A)$ is proper and locally of finite presentation as this is true for $X \to \mathop{\mathrm{Spec}}(k)$, see More on Morphisms, Lemma 37.10.3.
$\square$
Comments (2)
Comment #3174 by Anonymous on
Comment #3288 by Johan on