The Stacks project

Lemma 109.16.1. There exist an open substacks

\[ \mathcal{C}\! \mathit{urves}^{smooth, 1} \subset \mathcal{C}\! \mathit{urves}^{smooth} \subset \mathcal{C}\! \mathit{urves} \]

such that

  1. given a family of curves $f : X \to S$ the following are equivalent

    1. the classifying morphism $S \to \mathcal{C}\! \mathit{urves}$ factors through $\mathcal{C}\! \mathit{urves}^{smooth}$, resp. $\mathcal{C}\! \mathit{urves}^{smooth, 1}$,

    2. $f$ is smooth, resp. smooth of relative dimension $1$,

  2. given $X$ a scheme proper over a field $k$ with $\dim (X) \leq 1$ the following are equivalent

    1. the classifying morphism $\mathop{\mathrm{Spec}}(k) \to \mathcal{C}\! \mathit{urves}$ factors through $\mathcal{C}\! \mathit{urves}^{smooth}$, resp. $\mathcal{C}\! \mathit{urves}^{smooth, 1}$,

    2. $X$ is smooth over $k$, resp. $X$ is smooth over $k$ and $X$ is equidimensional of dimension $1$.

Proof. To prove the statements regarding $\mathcal{C}\! \mathit{urves}^{smooth}$ it suffices to show that given a family of curves $f : X \to S$, there is an open subscheme $S' \subset S$ such that $S' \times _ S X \to S'$ is smooth and such that the formation of this open commutes with base change. We know that there is a maximal open $U \subset X$ such that $U \to S$ is smooth and that formation of $U$ commutes with arbitrary base change, see Morphisms of Spaces, Lemma 67.37.9. If $T = |X| \setminus |U|$ then $f(T)$ is closed in $S$ as $f$ is proper. Setting $S' = S \setminus f(T)$ we obtain the desired open.

Let $f : X \to S$ be a family of curves with $f$ smooth. Then the fibres $X_ s$ are smooth over $\kappa (s)$ and hence Cohen-Macaulay (for example you can see this using Algebra, Lemmas 10.137.5 and 10.135.3). Thus we see that we may set

\[ \mathcal{C}\! \mathit{urves}^{smooth, 1} = \mathcal{C}\! \mathit{urves}^{smooth} \cap \mathcal{C}\! \mathit{urves}^{CM, 1} \]

and the desired equivalences follow from what we've already shown for $\mathcal{C}\! \mathit{urves}^{smooth}$ and Lemma 109.8.2. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0DZZ. Beware of the difference between the letter 'O' and the digit '0'.