Lemma 76.29.3. Let S be a scheme. Let f : X \to Y and g : Y' \to Y be morphisms of algebraic spaces over S. Denote f' : X' \to Y' the base change of f by g. Then
\begin{align*} \{ y' \in |Y'| : \text{the fibre of }f' : X' \to Y'\text{ at }y' \text{ is geometrically reduced}\} \\ = g^{-1}(\{ y \in |Y| : \text{the fibre of }f : X \to Y\text{ at }y \text{ is geometrically reduced}\} ). \end{align*}
Proof. For y' \in |Y'| choose a morphism \mathop{\mathrm{Spec}}(k) \to Y' in the equivalence class of y'. Then g(y') is represented by the composition \mathop{\mathrm{Spec}}(k) \to Y' \to Y. Hence X' \times _{Y'} \mathop{\mathrm{Spec}}(k) = X \times _ Y \mathop{\mathrm{Spec}}(k) and the result follows from the definition. \square
Comments (0)