The Stacks project

Lemma 17.31.5. Let $X$ be a topological space. Let $\mathcal{A} \to \mathcal{B} \to \mathcal{C}$ be maps of sheaves of rings. Let $C$ be the cone (Derived Categories, Definition 13.9.1) of the map of complexes $\mathop{N\! L}\nolimits _{\mathcal{C}/\mathcal{A}} \to \mathop{N\! L}\nolimits _{\mathcal{C}/\mathcal{B}}$. There is a canonical map

\[ c : \mathop{N\! L}\nolimits _{\mathcal{B}/\mathcal{A}} \otimes _\mathcal {B} \mathcal{C} \longrightarrow C[-1] \]

of complexes of $\mathcal{C}$-modules which produces a canonical six term exact sequence

\[ \xymatrix{ H^0(\mathop{N\! L}\nolimits _{\mathcal{B}/\mathcal{A}} \otimes _\mathcal {B} \mathcal{C}) \ar[r] & H^0(\mathop{N\! L}\nolimits _{\mathcal{C}/\mathcal{A}}) \ar[r] & H^0(\mathop{N\! L}\nolimits _{\mathcal{C}/\mathcal{B}}) \ar[r] & 0 \\ H^{-1}(\mathop{N\! L}\nolimits _{\mathcal{B}/\mathcal{A}} \otimes _\mathcal {B} \mathcal{C}) \ar[r] & H^{-1}(\mathop{N\! L}\nolimits _{\mathcal{C}/\mathcal{A}}) \ar[r] & H^{-1}(\mathop{N\! L}\nolimits _{\mathcal{C}/\mathcal{B}}) \ar[llu] } \]

of cohomology sheaves.

Proof. To give the map $c$ we have to give a map $c_1 : \mathop{N\! L}\nolimits _{\mathcal{B}/\mathcal{A}} \otimes _\mathcal {B} \mathcal{C} \to \mathop{N\! L}\nolimits _{\mathcal{C}/\mathcal{A}}$ and an explicit homotopy between the composition

\[ \mathop{N\! L}\nolimits _{\mathcal{B}/\mathcal{A}} \otimes _\mathcal {B} \mathcal{C} \to \mathop{N\! L}\nolimits _{\mathcal{C}/\mathcal{A}} \to \mathop{N\! L}\nolimits _{\mathcal{C}/\mathcal{B}} \]

and the zero map, see Derived Categories, Lemma 13.9.3. For $c_1$ we use the functoriality described above for the obvious diagram. For the homotopy we use the map

\[ \mathop{N\! L}\nolimits _{\mathcal{B}/\mathcal{A}}^0 \otimes _\mathcal {B} \mathcal{C} \longrightarrow \mathop{N\! L}\nolimits _{\mathcal{C}/\mathcal{B}}^{-1},\quad \text{d}[b] \otimes 1 \longmapsto [\varphi (b)] - b[1] \]

where $\varphi : \mathcal{B} \to \mathcal{C}$ is the given map. Please compare with Algebra, Remark 10.134.5. To see the consequence for cohomology sheaves, it suffices to show that $H^0(c)$ is an isomorphism and $H^{-1}(c)$ surjective. To see this we can look at stalks, see Lemma 17.31.4, and then we can use the corresponding result in commutative algebra, see Algebra, Lemma 10.134.4. Some details omitted. $\square$

Comments (2)

Comment #7433 by nkym on

I found a small typo "explicity" in the proof.

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0E1Y. Beware of the difference between the letter 'O' and the digit '0'.