Lemma 17.31.7. Let $f : X \to Y$ and $g : Y \to Z$ be morphisms of ringed spaces. Let $C$ be the cone of the map $\mathop{N\! L}\nolimits _{X/Z} \to \mathop{N\! L}\nolimits _{X/Y}$ of complexes of $\mathcal{O}_ X$-modules. There is a canonical map
\[ f^*\mathop{N\! L}\nolimits _{Y/Z} \to C[-1] \]
which produces a canonical six term exact sequence
\[ \xymatrix{ H^0(f^*\mathop{N\! L}\nolimits _{Y/Z}) \ar[r] & H^0(\mathop{N\! L}\nolimits _{X/Z}) \ar[r] & H^0(\mathop{N\! L}\nolimits _{X/Y}) \ar[r] & 0 \\ H^{-1}(f^*\mathop{N\! L}\nolimits _{Y/Z}) \ar[r] & H^{-1}(\mathop{N\! L}\nolimits _{X/Z}) \ar[r] & H^{-1}(\mathop{N\! L}\nolimits _{X/Y}) \ar[llu] } \]
of cohomology sheaves.
Proof.
Consider the maps of sheaves rings
\[ (g \circ f)^{-1}\mathcal{O}_ Z \to f^{-1}\mathcal{O}_ Y \to \mathcal{O}_ X \]
and apply Lemma 17.31.5.
$\square$
Comments (0)