Loading web-font TeX/Math/Italic

The Stacks project

Lemma 86.3.7. Let S be a scheme. Let f : X \to Y be a morphism of quasi-separated and quasi-compact algebraic spaces over S. For all L \in D_\mathit{QCoh}(\mathcal{O}_ X) and K \in D_\mathit{QCoh}(\mathcal{O}_ Y) (86.3.2.1) induces an isomorphism R\mathop{\mathrm{Hom}}\nolimits _ X(L, a(K)) \to R\mathop{\mathrm{Hom}}\nolimits _ Y(Rf_*L, K) of global derived homs.

Proof. By construction (Cohomology on Sites, Section 21.36) the complexes

R\mathop{\mathrm{Hom}}\nolimits _ X(L, a(K)) = R\Gamma (X, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(L, a(K))) = R\Gamma (Y, Rf_*R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(L, a(K)))

and

R\mathop{\mathrm{Hom}}\nolimits _ Y(Rf_*L, K) = R\Gamma (Y, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(Rf_*L, a(K)))

Thus the lemma is a consequence of Lemma 86.3.3. Namely, a map E \to E' in D(\mathcal{O}_ Y) which induces an isomorphism DQ_ Y(E) \to DQ_ Y(E') induces a quasi-isomorphism R\Gamma (Y, E) \to R\Gamma (Y, E'). Indeed we have H^ i(Y, E) = \mathop{\mathrm{Ext}}\nolimits ^ i_ Y(\mathcal{O}_ Y, E) = \mathop{\mathrm{Hom}}\nolimits (\mathcal{O}_ Y[-i], E) = \mathop{\mathrm{Hom}}\nolimits (\mathcal{O}_ Y[-i], DQ_ Y(E)) because \mathcal{O}_ Y[-i] is in D_\mathit{QCoh}(\mathcal{O}_ Y) and DQ_ Y is the right adjoint to the inclusion functor D_\mathit{QCoh}(\mathcal{O}_ Y) \to D(\mathcal{O}_ Y). \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.